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Abstract 

This study reviews the empirical evidence over the last decade of the risk-adjusted outperformance of US equity portfolios 

constructed with robust optimization techniques. The performance of such portfolios is compared to a market-weighted index, 

a naively diversified (equal-weighted) strategy,  Maximal Sharpe Ratio and Global Minimum Variance portfolios constructed 

within the classical Markowitz optimization framework, a Risk Parity Portfolio and a portfolio optimized with Random Forest 

techniques. The results confirm that the utilization of robust covariance and return estimators in the portfolio design process 

yielded significant relative outperformance on a risk-adjusted basis. The paper provides detailed code in Python to facilitate 

investors’ practical implementation of the strategies and to enable academics to easily replicate and interrogate the results. 
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1. Introduction 

In spite of the theoretically resilient underpinnings 

of robust portfolio optimization techniques, 

prospective (and existing) users of the Black-

Litterman and Ledoit-Wolf procedures – which 

produce robust return and covariance matrix estimates 

respectively – continue to confront uncertainties 

regarding the intuition behind the models, their 

practical implementation and their merit, that is, their 

capacity to generate out-performance. With respect to 

the challenges of both comprehension and application,  
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it is instructive to merely conduct a brief survey of the   

promises of enlightenment contained in the titles of 

papers published since Black-Litterman’s  original 

pioneering work of 1991: “The Intuition Behind 

Black-Litterman Model Portfolios” (He and 

Litterman, 1999); “A Demystification of the Black-

Litterman Model” (Satchell and Scowcroft, 2000); “A 

Step-by-Step Guide to the Black-Litterman Model” 

(Izadorek, 2004); “The Black-Litterman Model 

Explained” (Cheung, 2010); “Deconstructing Black-

Litterman” (Michaud, 2013) and “Reconstructing the 

Black-Litterman Model” (Walters, 2014).  
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This paper provides a concise synthesis of the 

conceptual foundations of the robust portfolio 

optimization techniques without sacrificing analytical 

rigour. I situate the Ledoit-Wolf and Black-Litterman 

optimization procedures within the broader theoretical 

context of Harry Markowitz’s Modern Portfolio 

Theory and progress to discuss novel alternative 

approaches to diversification and optimization, 

namely Risk Parity and Random Forest. I provide a 

detailed computational framework in open-source 

code which will enable the reader to construct the 

portfolios, re-specify model parameters and backtest 

performance using standard metrics. Finally, I utilize 

this framework to examine the evidence in the US 

equity market over the last decade as to whether robust 

estimation techniques have indeed proved capable of 

producing portfolios which generate relative risk-

adjusted outperformance. Performance will be 

compared to two market benchmarks, a market-

weighted index (MW), and an equal-weighted (EW) 

index, as well as common alternative strategies, 

namely Maximal Sharpe Ratio (MSR) and Global 

Minimum Variance (GMV) portfolios constructed 

within the classical Markowitz optimization 

framework, a Risk Parity Portfolio (Equal Risk 

Contribution - ERC) and a portfolio optimized with 

Random Forest (RF) techniques. The guiding 

objective is to provide clarity on model construction, 

implementation, and value. 

2. Literature Review 

Since the publication in 1952 of Harry Markowitz’s 

seminal work, Portfolio Selection [1], the mean-

variance methodology has been the dominant solution 

to the portfolio selection problem. The optimal 

portfolio is formed by the rational investor who 

allocates wealth to assets within her investable  

universe such that she maximizes expected (mean) 

return for a given risk level, represented by portfolio 

variance and estimated by the sample covariance 

matrix of historic asset returns. The set of optimal 

portfolios for all risk levels defines the efficient 

frontier. Merton (1972) [2] allowed for the relaxation 

of the short selling constraint within the context of the 

classical Mean-Variance Optimization solution.   

Academics and practitioners have since confronted 

multiple challenges related to the practical application 

of the model, particularly, the sensitivity of the 

“optimal” portfolio to the estimation error of expected 

return and volatility. Michaud (1989) [3] contended 

that Mean-Variance Optimization gave rise to error-

maximizing and under-performing portfolios, stating 

that “The main problem with MVO is its tendency to 

maximize the effects of errors in the input assumptions 

[which]… can yield results that are inferior to those of 

simple equal-weighting schemes”  The latter comment 

on underperformance references earlier work 

undertaken by Jobson and Korkie (1981) [4]. Michaud 

further observes that MVO tends to produce 

unintuitive, concentrated portfolios noting that the 

model “significantly over-weights those securities that 

have large estimated returns, negative correlations and 

small variances”. From the perspective of inferential 

statistics Stein (1956) [5] insisted on the 

“Inadmissibility of the Usual Estimator of the Mean of 

a Multivariate Normal Distribution”. Best and Grauer 

(1991) [6] highlighted the extreme sensitivity of 

portfolio design to changes in the mean return vector. 

Similarly Chopra (1993) [7] together with Ziemba 

(1993) [8] demonstrated that small changes to the 

mean values of variances can result in radically 

different “optimal” portfolios. 

Given the described issues with the estimator 

inputs, many academics came to focus on Bayes-Stein 

shrinkage estimation, a technique formulated by Stein 

(1956) [5] and further developed by James and Stein 

(1961) [9]. In essence, these estimators are generally 

formed by shrinking an observed prior estimate of the 

population mean towards an updated estimator, which 

incorporates some additional information, in order to 

obtain a posterior estimate, which is a weighted 

average of the two. The weights are determined by 

some shrinkage factor. The updated estimated value 

may draw on properties of the statistical distribution of 

the observed data or incorporate exogenous 

information. This paper leverages the Black-Litterman 

model (1991,1992) [10] [11] which seeks to provide 

robust estimates of security returns and the Ledoit-

Wolf (2013, 2014) [12] [13]  shrinkage technique 

which aims to generate robust estimates of the 

covariance matrix.  The former produces a weighted 

average of security returns implied by market 

equilibrium and the investor’s subjective expectations. 

The latter generates a posterior covariance matrix 

which is a weighted average of the observed sample 
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covariance matrix and a covariance matrix obtained by 

using Elton and Gruber’s (1973, 1978) [14] [15] 

constant correlation model in which the correlation 

coefficients are equal to the mean of the sample 

correlation coefficients. 

In the aftermath of the Global Financial Crisis, risk 

management came to rival performance management 

as a driving objective of portfolio optimization. This 

increased the theoretical and practical interest in the 

risk parity portfolio, defined as a strategy which seeks 

to constrain each asset such that they contribute 

equally to portfolio volatility. Risk Parity portfolios 

gained favor as the academic literature and its 

proponents in the Hedge Fund industry proliferated. 

Noteworthy contributions to the academic discourse 

include papers by Roncalli et al. (2009, 2012) [16] 

[17]. The advocacy of Ray Dalio and the performance 

of the Bridgewater “All Weather” asset allocation 

strategy further helped increase the popularity of so-

called Equal Risk Contribution strategies.  

Traditionally portfolio optimization has focused on 

the ex-ante optimal portfolio based on estimates of 

future risk and returns. Novel machine learning 

techniques applied to the portfolio selection problem 

tend to rely on identifying the ex-post optimal 

portfolios over an historical time series which serve as 

a dependent (or “target”) variable, and which one then 

seeks to explain as a function of  a large number of 

independent (or “feature”) variables. Breiman 

developed the concept of the Random Forest (2001) 

[18], a supervised machine learning algorithm based 

on ensemble learning, which combines multiple 

Classification and Regression Trees (CART) 

(Breiman et al.,1984) [19] using Bagging (Breiman, 

1996) [20]. Bagging is a process which aggregates the 

results of multiple decision trees trained on random 

subsets of the features and bootstrapped1 samples of 

the training data to grow a forest of “random” trees. 

He posited that ensembles of decision trees could 

produce highly accurate predictions of target variables 

whilst handling a large number of input variables 

without overfitting. The random forest algorithm can 

be used for both regression and classification tasks. 

Yang (2013) [21] demonstrated the application of the 

——— 
1 In the jargon, resampling with replacement is referred to as 
bootstrapping. The term “Bagging” derives from the practice of both 

Bootstrapping and Aggregating the results. 

technique to modelling portfolio risk whilst Khaidem 

et al (2016) [22] applied it to stock price prediction 

using technical indicators as the feature variables.  

3. Theory of Optimal Portfolio Construction 

Traditional portfolio optimization theory adheres 

to the notion that the objective of a rational investor is 

to select the portfolio which minimizes risk for any 

given level of expected return amongst the set of all 

possible portfolios. The set of risk minimizing 

portfolios for varying required levels of return are 

described as optimal. The set of all possible portfolios 

is called the feasible set. Expected portfolio return is 

the weighted average of the expected returns of 

portfolio constituents. Portfolio risk refers to the 

dispersion of expected portfolio returns, represented 

by their historic standard deviation, under the 

assumption that these returns are normally distributed. 

Alternative definitions of risk incorporate the 

assumption of investors’ aversion to semi-variance, 

negative skewness, and positive excess kurtosis. 

Hodges (1997) [23] formulated an Adjusted Sharpe 

Ratio risk measures which incorporate the third and 

fourth moments of non-normal return distributions. 

Harlow (1991) [24] employed lower partial moments 

as a downside risk measure in portfolio selection. 

Whilst such risk measures have theoretical and 

intuitive appeal, the co-movement of the higher 

moments and the lower partial moments has proved 

difficult to estimate and the expected diversification 

effect within such portfolios has consequently proved 

vulnerable to significant estimation error. This paper 

therefore retains a return-variance optimization 

criterion which solves for the asset allocation, w*, that 

maximizes a utility function of the form: 

 

𝜇Π −
𝛾

2
 𝑉Π 

 

Where 𝜇Π is portfolio return, 𝑉Π is portfolio variance 

and 𝛾 > 0 represents the degree of risk aversion. 

This is the starting point of the classical 

Markowitz mean-variance optimization solution, 

which will be described in detail. I will then proceed 
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to describe enhancements to the model which address 

its well-documented deficiencies by providing robust 

estimates for security returns and the variance-

covariance matrix. 

3.1. Canonical Markowitz Framework for Mean-

Variance Optimization (MVO) 

The true excess returns2 of the constituent 

securities in a portfolio are assumed to have a normal 

distribution, denoted by: 

 

𝑟 ∼ 𝑁 (𝜇, 𝜎2) 
 

Where 𝜇 is the expected excess return and 𝜎2 the 

variance. 

 

The expected excess return of a portfolio is the 

weighted sum of the expected excess return on each 

constituent asset: 

 

𝜇𝛱 =  ∑ 𝑤𝑖

𝑁

𝑖=1

𝜇𝑖 

 

which is written in matrix form as follows: 

 

𝜇𝛱 =  𝒘′𝝁 

 

Where 𝒘′is the transpose of the asset weight vector 

and 𝝁 is the vector of expected returns. 

 

The variance of a portfolio is determined by the 

weights, variances and covariances on the constituent 

assets. For a portfolio of n assets, we obtain the 

generalized expression for the variance of the portfolio 

returns: 

 

𝑉Π = ∑ 𝑤𝑖
2

𝑁

𝑖=1

𝜎𝑖
2

 
+  ∑ ∑ 𝑤𝑖𝑤𝑗

𝑁

𝑗=1

𝜌𝑖𝑗

𝑁

𝑖=1

𝜎𝑖𝜎𝑗 

 

Where 𝜌𝑖𝑗 is the correlation between assets i and j. 

 

Employing matrix notation, portfolio variance is 

compactly represented a quadratic form of the 

——— 
2 Excess Return refers to the return in excess of the risk-free rate. 

covariance matrix and the portfolio weights as 

follows: 

 

𝑉Π =  𝒘′𝚺𝒘 

 

Where 𝚺 is an N × N covariance matrix given by: 

 

[

𝜎11 ⋯ 𝜎1𝑁

⋮ ⋱ ⋮
𝜎𝑁1 ⋯ 𝜎𝑁𝑁

] 

 

We denote the joint return distribution of the portfolio 

returns as the following multivariate normal 

distribution:  

 

𝑅𝑃 ∼ 𝑁 (𝒘′𝝁, 𝒘′𝚺𝒘) 
 

Given this parametrization of portfolio variance 

and excess return, we can formulate the mean-variance 

optimization problem as an unconstrained quadratic 

optimization problem which maximizes investor 

utility, U, in the decision variable w: 

 

argmax
𝑤

𝑈 =  𝒘′𝝁 −
1

2
 𝛾 𝒘′𝚺𝒘 

 

Subject to:  

𝒘 ⋅ 𝒊 = 𝟏 

 

The optimal weights w* are found by determining the 

stationary point of the objective function, which 

requires equating the partial derivatives of the weight 

variables to zero. The first order condition is 

represented thus:  

 

∇𝑈(𝒘∗) =  
𝜕𝑉(𝒘∗)

𝜕𝒘
= 𝜇 −

1

2
 ⋅ 2 𝛾 𝚺𝒘∗ = 0 

Which simplifies to: 

 

                       𝝁 −  𝛾 𝚺𝒘∗ = 0 

 

Which yields the equivalent expression: 

 

            𝝁 =  𝛾 𝚺𝒘∗ 
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Which implies the following candidate solution for the 

so-called market portfolio: 

 

            𝒘∗ =  
1

𝛾
 𝚺−𝟏𝝁 

 

Finally, we examine the Hessian Matrix of second 

partial derivatives to determine if it is negative definite 

and so confirm we have found a (unique) maximum at 

the stationary point: 

 

∇2𝑈(𝒘∗) =  H𝑈(𝒘∗) =  − 𝛾 𝚺 < 0 

The market portfolio is the asset allocation solution 

which maximises expected excess return per unit of 

risk, that is, it provides the optimal asset weights to 

maximise the Sharpe ratio: 

 

max
𝑤

𝒘′𝝁

√𝒘′𝚺𝒘
 

 

This Maximal Sharpe Ratio (MSR) portfolio is visible 

on the ex-ante efficient frontier depicted in Figure 1 

along with the Global Minimum Variance and Equal-

Weighted portfolio. Conceptually, the Global 

Minimum Variance portfolio can be considered a 

special variant of the MSR where the expected return 

for each constituent security is equalised, and asset 

weights are purely a function of the covariance matrix. 

The EW “naively diversified” portfolio, is dominated 

by both the MSR and GMV portfolios. 

 

          Figure 1: Ex-ante Efficient Frontier 

 

3.2. Achieving Robust Return Estimates with the 

Black-Litterman Procedure 

The Black-Litterman procedure is a Bayesian 

shrinkage method, which incorporates (1) The asset 

returns implied by market equilibrium, denoted by 𝛱; 

and  (2) The subjective expectations of  asset returns, 

formed by a  “link” matrix 𝑃 expressing bearishness 

or bullishness and a vector 𝑄 expressing expected 

relative or absolute returns for these positions. The 

result is a vector of posterior expected returns, 

denoted by 𝜇̂𝐵𝐿. 

The vector of implied equilibrium excess returns 

is obtained by a process of reverse-optimization, using 

the observed market capitalizations of securities for 

weights, the observed sample variance-covariance 

matrix and the aggregate risk aversion of market 

participants, denoted by 𝛿.  𝛿 is derived from observed 

market data in the following manner: 

 

If:    𝛱𝑖 =  𝛽𝑖  [𝐸(𝑅𝑀) − 𝑟𝑓] 
 

Then, equivalently:  

𝛱𝑖 =  
𝐶𝑜𝑉𝑖,𝑀 

𝑉𝑎𝑟𝑀,𝑀

[𝐸(𝑅𝑀) − 𝑟𝑓] 

=  
[𝐸(𝑅𝑀) − 𝑟𝑓] 

𝑉𝑎𝑟𝑀,𝑀

𝐶𝑜𝑉𝑖,𝑀 

The first term, [𝐸(𝑅𝑀) − 𝑟𝑓] /𝑉𝑎𝑟𝑀,𝑀, is 𝛿 ,the market 

price of risk. Under the assumption that rational 

investors will seek to maximize the risk-return tradeoff 

on all assets, then the market portfolio will be formed 

by rational investors maximizing their utility function 

in the weight variable. 𝑤𝜆 denotes asset weights under 

conditions of market equilibrium. 

 

argmax
𝑤

{𝒘′𝜫 −
1

2
 𝛿 𝒘′𝚺𝒘} =  𝒘𝝀 

 

Assuming therefore that market capitalization weights 

are the product of market participants’ aggregate 

efforts to maximize utility and are thus optimal, and 

given furthermore that both the sample covariance 

matrix and the average risk aversion level are 

observable, the derivation of the vector of implied 

equilibrium excess returns is trivial: 
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𝜫 =  𝛿 𝚺 𝒘𝝀 

 

This formula moreover supplies further intuition vis-

à-vis the market price of risk. Pre-multiplying both 

sides of the previous equation by the transpose of the 

weights of the market in equilibrium gives expected 

market return as a function of expected market 

variance and the risk coefficient: 

  

𝒘𝝀
′ 𝜫 =  𝛿 𝒘𝝀

′ 𝚺 𝒘𝝀 

 

Restating in terms of 𝛿 : 

 

𝛿 =  
𝒘𝝀

′ 𝜫

 𝒘𝝀
′ 𝚺 𝒘𝝀

=
𝒘𝝀

′ 𝜫 

𝜎𝑚𝑘𝑡
2  

         =
𝒘𝒎𝒌𝒕

′ 𝜫 

𝜎𝑚𝑘𝑡

 ×
1

𝜎𝑚𝑘𝑡

  

        = 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜𝑚𝑘𝑡  ×
1

𝜎𝑚𝑘𝑡

 

The vector of posterior expected returns, 𝝁̂𝑩𝑳, will 

be a function of the degree of confidence in the 

subjective expected returns relative to the degree of 

confidence in the market-implied expected returns. 

Essentially, 𝝁̂𝑩𝑳 can be considered as type of complex 

weighted average of subjective and market-implied 

expected returns where the weights are determined by 

the level of confidence in one expected return relative 

to the other.  

For market implied returns, if uncertainty is 

captured by the dispersion or variance of asset returns 

in the market equilibrium model, then, intuitively, the 

inverse of the sample variance-covariance matrix3 will 

reflect the degree of certainty. The greater the 

magnitude of variability, the smaller the inverse of 𝚺. 

A bounded scalar parameter4  𝜏 may be applied to 𝚺 to 

adjust for estimation error. One approach is to set 𝜏 = 

1/T= T-1, where T is the number of historical periods 

used. Generally, 𝜏 is close to zero. The prior 

equilibrium distribution therefore is: 

 

 𝜇𝑝𝑟𝑖𝑜𝑟   ∼ 𝑁  (𝜫,   τ𝚺) 
——— 
3 Black and Litterman assume that the variance of the estimate Σπ 

is proportional to the sample covariance matrix of the excess 

returns Σ with a coefficient of proportionality τ i.e.  Σπ = τΣ 
4  0 < 𝜏 < 1 

The confidence factor for market-implied returns is 

therefore: 

(τ𝚺)−1 

 

Having obtained the prior, the equilibrium vector 

of excess return, the investors’ K views on N assets  

are now described by (1)  a K × N matrix of bullish or 

bearish (long or short) positions denoted by P5, where 

K refers to the number of views and N to the number 

of assets in the investment universe; and (2) a K-

element column vector of subjective expected returns 

on these positions, Q. By way of example, we assume 

3 views in an investment universe of 4 securities. The 

first is of the relative outperformance of asset A versus 

asset B ; the second and third is the belief that assets B 

and C will return 3% on average. We hold no views on 

Asset D. The position matrix, P, would be of the form: 

 

𝑷 = (

𝑨 𝑩 𝑪 𝑫
𝑽𝒊𝒆𝒘 𝟏 1 −1 0 0
𝑽𝒊𝒆𝒘 𝟐 0 1 0 0
𝑽𝒊𝒆𝒘 𝟑 0 0 1 0

) 

 

The first row incorporates the relative positions, the 

second row and third rows, the absolute positions. 

 

The Q vector of expected returns will be of the form: 

𝑸 = (
𝑽𝒊𝒆𝒘 𝟏 10%
𝑽𝒊𝒆𝒘 𝟐 2%
𝑽𝒊𝒆𝒘 𝟑 1%

) 

 

The general forms of the P matrix and Q vector are:   

 

𝑷 = (

𝑝11 … 𝑝1𝑛

⋮ ⋱ ⋮
𝑝𝑘1 … 𝑝𝑘𝑛

) 

 

 

𝑸 =  (
𝑄1

⋮
𝑄𝑘

 ) 

 

𝛀 models uncertainty in the views space. The 

uncertainty of the views is represented by a random, 

5 For relative views, the sum of the weights will equal 0 while 

absolute views equal 1 
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independent, normally distributed error term vector 

(ε). Views under uncertainty will thus have the form 

of a 𝑸 vector and 𝜺 vector: 

 
𝑄1

⋮
𝑄𝑘

 +

𝜀1

⋮
𝜀𝑘

 

 

The error term has mean of 0 and a covariance matrix 

𝛀. The distribution of error terms is thus: 

 

𝜀1

⋮
𝜀𝑘

 ~ 𝑁 [(
0
⋮
0

 ) , (  𝛀 =  (

𝜔1,1 0 0

0 ⋱ 0
0 0 𝜔𝑘,𝑘

))] 

 

The structure of the view-uncertainty matrix 𝜴 is 

inherited from the sample covariance matrix 𝜮 and the 

P matrix which identifies the asset positioning on the 

views vector 𝑸.  𝛀 is a diagonal covariance matrix 

with off-diagonal positions set to zero under the 

assumption that the views are independent of one 

another. The variance of the views is formed in the 

following manner: 

 

𝜴 = 𝑑𝑖𝑎𝑔 𝑃(τ𝚺)𝑃𝑇  

 

The diagonal matrix 𝛺 is therefore populated in the 

following manner: 

 

  𝛀 =  (
𝑃1(τ𝚺)𝑃1

𝑇 0 0
0 ⋱ 0
0 0 𝑃𝑘(τ𝚺)𝑃𝑘

𝑇
) 

 

The views distribution is: 

 

 𝑟𝑣𝑖𝑒𝑤𝑠   ∼ 𝑁 (𝐐, 𝛀) 

 
The confidence factor for subjective expected returns 

is seen below, where the transpose of the P matrix 

simply links the confidence Ω−1  to vector Q: 

 

(P′𝛀−1 ) 

 

 

We have now gathered the necessary inputs to 

calculate the vector of posterior expected returns, 𝜇̂𝐵𝐿 

also referred to as the Combined Return Vector: 

𝜇̂𝐵𝐿 = [(τΣ)−1 +  P′Ω−1P]−1 [(τΣ)−1Π +  P′Ω−1Q]   

 
Where: 

- 𝜇̂𝐵𝐿 is the Combined Return Vector (N-element 

vector where N refers to the assets in the 

investable universe); 

- τ is a scalar;  

- Σ is the sample covariance matrix of excess 

returns (N x N matrix). 

- Π  is the Implied Equilibrium Return Vector (N x 

1 column vector). 

- Q is the View Vector (K x 1 column vector, where 

K refers to the subjective views on the N assets ). 

- P is a matrix that identifies the asset positions 

related to the K views in the view vector (K x N 

matrix). 

- Ω is a diagonal covariance matrix of error terms 

of the subjective views where the elements 

represent the uncertainty in each view (K x K 

matrix). 

 

It should be apparent that 𝜇̂𝐵𝐿 is a confidence-

weighted average of the expected returns implied by 

market equilibrium Π and the expected returns implied 

by the investor’s views Q, where (τΣ)−1 and 𝑃𝛺−1 

represent confidence in estimates of the market 

equilibrium and views respectively. We multiply the 

second term [(τΣ)−1Π +  P′Ω−1Q] in the master 

formula by the first term [(τΣ)−1 +  P′Ω−1P]−1  to 

ensure that the sum of all weights is equal to 1. 

3.3. Achieving Robust Estimates of the Covariance 

Matrix with the Ledoit-Wolf  Shrinkage Method 

The shrinkage technique for covariance matrix 

estimation involves shrinking (1) an unbiased, high-

variance, unstructured estimate toward (2) a biased, 

low-variance, structured estimate. In the context of 

Ledoit-Wolf model, the objective is to obtain the 

optimal weighted average of a sample covariance 

matrix and a shrinkage target, based on a constant 

correlation structure: 

 

Σ̂𝐿𝑊 =  𝑤Σ̂𝐶𝐶 + (1 − 𝑤)Σ̂𝑆 

 

The shrinkage intensity is determined by the 

shrinkage constant, the weight 𝑤 applied to the 

shrinkage target. The optimal shrinkage constant 𝒘∗is 



 Risk Analysis and Performance Evaluation in Asset Management 8 

derived by minimization of a quadratic loss function, 

which in a matrix setting is the squared Frobenius 

norm analogous with the squared error loss function. 

We are thus seeking to minimize here the quadratic 

measure of distance between the true (Σ) and inferred 

(w Σ̂𝐶𝐶  +  (1 −  w) Σ̂𝑆) covariance matrices: 

 

L(w) =   ‖(w Σ̂𝐶𝐶  +  (1 −  w)Σ̂𝑆) −  Σ‖
𝐹

2
 

Which gives rise to the expected loss function: 

E(L(w) = ∑ ∑ 𝐸(𝑤 r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 +  (1 −  w)𝑠𝑖𝑗 −  σ𝑖𝑗)
2

𝑁

𝑗=1

𝑁

𝑖=1

 

Where: r ̅ is the mean of sample correlations, 

𝑠𝑖𝑖  𝑎𝑛𝑑 𝑠𝑗𝑗  are the sample variances and σ𝑖𝑗  is the true 

covariance between elements i and j. 

 

Noting that E(𝑥 2) = Var(𝑥) + [E(𝑥)] 2 ; for any random 

variable x; we can rewrite 

 

E(L(w) = ∑ ∑ 𝑉𝑎𝑟(𝑤 r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 + (1 −  w)𝑠𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

 

+ [𝐸 (𝑤 r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 +  (1 −  w)𝑠𝑖𝑗 − σ𝑖𝑗)]
2
 

 

Which simplifies to:  

 

E(L(w) = ∑ ∑ 𝑤2 𝑉𝑎𝑟 (r ̅√𝑠𝑖𝑖𝑠𝑗𝑗)     

𝑁

𝑗=1

𝑁

𝑖=1

+  (1 −  w)2 𝑉𝑎𝑟 (𝑠𝑖𝑗 )

+ 2𝑤(1 − 𝑤)𝐶𝑜𝑣(r ̅√𝑠𝑖𝑖𝑠𝑗𝑗, 𝑠𝑖𝑗)

+  𝑤2 (𝜙𝑖𝑗 − σ𝑖𝑗)2 

 

Where: 𝜙𝑖𝑗 is the constant covariance term for 

elements ij formed by the average correlation in the 

population 𝜚̅ and the square root of the population 

variance terms  √σ𝑖 𝑖σ𝑗𝑗 . 

 

Taking the first derivative of the expected loss 

function with respect to w gives:  

 

d E(L(w)

d w
 = 2 ∑ ∑ 𝑤 𝑉𝑎𝑟 (r ̅√𝑠𝑖𝑖𝑠𝑗𝑗)     

𝑁

𝑗=1

𝑁

𝑖=1

−  (1 −  w) 𝑉𝑎𝑟 (𝑠𝑖𝑗 )

+ (1 − 2𝑤)𝐶𝑜𝑣(r ̅√𝑠𝑖𝑖𝑠𝑗𝑗, 𝑠𝑖𝑗)

+  𝑤 (𝜙𝑖𝑗 − σ𝑖𝑗)2 

 

Setting the first derivative to zero and solving for w*, 

yields: 

 

𝑤∗ =
∑ ∑  𝑉𝑎𝑟 (𝑠𝑖𝑗 ) 𝑁

𝑗=1
𝑁
𝑖=1 − 𝐶𝑜𝑣(r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 , 𝑠𝑖𝑗)

∑ ∑   𝑉𝑎𝑟 (r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 −  𝑠𝑖𝑗 ) + 𝑁
𝑗=1

𝑁
𝑖=1 (𝜙𝑖𝑗 − σ𝑖𝑗)2

 

 

Notice that the terms in the numerator represent the 

sum of the variances of the entries of the sample 

covariance matrix  and sum of the covariances of the 

entries of the constant correlation covariance matrix 

with the entries of the sample covariance matrix. 

Notice also that the denominator contains the 

population terms  𝜙𝑖𝑗 and σ𝑖𝑗. Ledoit and Wolf show 

that w* can be shown to be proportional to a constant 

𝜅̂ divided by time T: 

 

𝑤∗ =
𝜅̂ 

T
 

 

It follows from this relation that: 

 

 𝜅 = 𝑇𝑤∗ 

 

   =
∑ ∑  𝑉𝑎𝑟 (√𝑇 𝑠𝑖𝑗 ) 𝑁

𝑗=1
𝑁
𝑖=1 −𝐶𝑜𝑣 [(√𝑇   r̅ √𝑠𝑖𝑖𝑠𝑗𝑗),   (√𝑇 𝑠𝑖𝑗)]

∑ ∑   𝑉𝑎𝑟 (r̅ √𝑠𝑖𝑖𝑠𝑗𝑗− 𝑠𝑖𝑗 )+ 𝑁
𝑗=1

𝑁
𝑖=1 (𝜙𝑖𝑗− σ𝑖𝑗)2

 

 

Taking the first term in the numerator, Ledoit and 

Wolf contend that standard asymptotic theory, under 

the assumptions of iid data and finite fourth moments 

provides consistent estimators for π: 

 

∑ ∑  𝑉𝑎𝑟 (√𝑇 𝑠𝑖𝑗 ) 

𝑁

𝑗=1

𝑁

𝑖=1

 

 

→ ∑ ∑  Asy𝑉𝑎𝑟 (√𝑇 𝑠𝑖𝑗  ) 

𝑁

𝑗=1

𝑁

𝑖=1

 

→ 𝜋 
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Where 𝜋 represents the sum of asymptotic variances 

of the entries of the sample covariance matrix scaled 

by √𝑇.  

 

Similarly: 

 

∑ ∑  𝐶𝑜𝑣 [(√𝑇   r̅ √𝑠𝑖𝑖𝑠𝑗𝑗),   (√𝑇 𝑠𝑖𝑗)] 

𝑁

𝑗=1

𝑁

𝑖=1

 

 

→ ∑ ∑  𝐴𝑠𝑦𝐶𝑜𝑣 [(√𝑇   r̅ √𝑠𝑖𝑖𝑠𝑗𝑗),   (√𝑇 𝑠𝑖𝑗)]  

𝑁

𝑗=1

𝑁

𝑖=1

 

→ 𝜌 
 

Where 𝜌 represents the sum of asymptotic covariances 

of the entries of the shrinkage target with the entries of 

the sample covariance matrix scaled by √𝑇. 

The authors prove that a consistent estimator of π̂ij  

will be found by first finding the product of the 

deviations of the returns on securities i and j from their 

average returns at each time t and then taking sum of 

the squared differences of this product and the sample 

variance over total time T: 

 

π̂ij =  
1

𝑇
 ∑{(y𝑖,𝑡 − y̅𝑖,)(y𝑗,𝑡 − y̅𝑗,)  −  𝑠𝑖𝑗 }

2
𝑇

𝑡=1

  

 

Then the consistent estimator for 𝜋 is: 

 

π̂ =  ∑ ∑  π̂ij  

𝑁

𝑗=1

𝑁

𝑖=1

 

 

A consistent estimator of 𝜌 is proven to be found by 

splitting it into its diagonal and off-diagonal elements. 

By definition: 

 

∑ ∑  𝐴𝑠𝑦𝐶𝑜𝑣 [(√𝑇   r̅ √𝑠𝑖𝑖𝑠𝑗𝑗),   (√𝑇 𝑠𝑖𝑗)]  

𝑁

𝑗=1

𝑁

𝑖=1

 

 

= ∑ 𝐴𝑠𝑦𝑉𝑎𝑟[√𝑇 𝑠𝑖𝑖 ]

𝑁

𝑖=1

+ ∑ ∑  𝐴𝑠𝑦𝐶𝑜𝑣[(√𝑇   r̅ √𝑠𝑖𝑖𝑠𝑗𝑗),   (√𝑇 𝑠𝑖𝑗)]  

𝑁

𝑗=1
j≠i

𝑁

𝑖=1

 

Which implies on the diagonal for element i: 

 

𝐴𝑠𝑦𝑉𝑎𝑟[√𝑇 𝑠𝑖𝑖 ]  =  
1

𝑇
 ∑{(y𝑖,𝑡 − y̅𝑖,)  − 𝑠𝑖𝑖 }

2
𝑇

𝑡=1

 

                                 =  π̂ij  

 

And on the off-diagonal for elements i,j: 

 

𝐴𝑠𝑦𝐶𝑜𝑣[(√𝑇   r̅ √𝑠𝑖𝑖𝑠𝑗𝑗),   (√𝑇 𝑠𝑖𝑗)]  

 

     =  
r ̅

2
 √

𝑠𝑗𝑗

𝑠𝑠𝑖𝑖

 𝐴𝑠𝑦𝐶𝑜𝑣[√𝑇 𝑠𝑖𝑖 ,   √𝑇 𝑠𝑖𝑗] 

         + √
𝑠𝑖𝑖

𝑠𝑠𝑗𝑗

 𝐴𝑠𝑦𝐶𝑜𝑣[√𝑇 𝑠𝑗𝑗 ,   √𝑇 𝑠𝑖𝑗] 

 

                  =  
r ̅

2
 √

𝑠𝑗𝑗

𝑠𝑠𝑖𝑖

 𝜑̂𝑖𝑖,𝑖𝑗 +  √
𝑠𝑖𝑖

𝑠𝑠𝑗𝑗

 𝜑̂𝑗𝑗,𝑖𝑗 

 

Where 𝜑𝑖𝑖,𝑖𝑗  and 𝜑𝑗𝑗,𝑖𝑗 are: 

 

𝜑𝑖𝑖,𝑖𝑗 =
1

𝑇
 ∑{(y𝑖,𝑡 −  y̅𝑖,)

2  −  𝑠𝑖𝑖 }

𝑇

𝑡=1

{(y𝑖,𝑡 −  y̅𝑖,)(y𝑗,𝑡 −  y̅𝑗,) −  𝑠𝑖𝑗 }
2
 

𝜑𝑗𝑗,𝑖𝑗 =
1

𝑇
 ∑{(y𝑗,𝑡 −  y̅𝑗,)

2  −  𝑠𝑗𝑗 }

𝑇

𝑡=1

{(y𝑖,𝑡 −  y̅𝑖,)(y𝑗,𝑡 −  y̅𝑗,) − 𝑠𝑖𝑗 }
2
 

 

Then the consistent estimator for 𝜌 is: 

 

𝜌̂ =  ∑ π̂ii 

𝑁

𝑖=1

 + ∑ ∑  
r ̅

2
 √

𝑠𝑗𝑗

𝑠𝑠𝑖𝑖
 𝜑̂𝑖𝑖,𝑖𝑗 + √

𝑠𝑖𝑖

𝑠𝑠𝑗𝑗
 𝜑̂𝑗𝑗,𝑖𝑗  

𝑁

𝑗=1
j≠i

𝑁

𝑖=1

 

 

Finally, turning to the denominator terms: 

 

∑ ∑   𝑉𝑎𝑟 (r̅ √𝑠𝑖𝑖𝑠𝑗𝑗 − 𝑠𝑖𝑗 ) =   0 
1

𝑇

𝑁

𝑗=1

𝑁

𝑖=1

 

 

And: 

 

𝛾 = ∑ ∑   

𝑁

𝑗=1

𝑁

𝑖=1

(𝜙𝑖𝑗 − σ𝑖𝑗)2 
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Where 𝛾 is the misspecification of the population 

shrinkage target, for which the consistent estimator is 

its sample counterpart  : 

 

𝛾 = ∑ ∑   

𝑁

𝑗=1

𝑁

𝑖=1

(r̅ √𝑠𝑖𝑖𝑠𝑗𝑗 −  𝑠𝑖𝑗 )
2 

 

Collecting the three consistent estimator terms over T 

gives the optimal shrinkage constant 𝑤∗: 

 

𝑤∗ =
(π̂ − 𝜌̂) / 𝛾̂

𝑇 
=

𝜅̂ 

T
 

4. Diversification by other means: The Risk 

Parity Portfolio. 

The objective of a Risk Parity Portfolio is that all 

constituent assets contribute equally to portfolio risk. 

More precisely the weighted marginal risk 

contribution (variously referred to as component risk, 

the dollar risk contribution or simply the risk 

contribution) for every asset must be the same: 

 

w𝑖  
∂σ𝑃  

∂w𝑖

=  w𝑗  
∂σ𝑃  

∂w𝑗

 

 

Equivalently and somewhat more intuitively, the risk 

contribution can be expressed as a function of 

covariance with the portfolio: 

 

RC𝑖  =  
w𝑖  

σ𝑃

 Cov [ R𝑖  , R𝑃  ]  

 

         =  
w𝑖  (𝚺𝐰)𝑖  

√𝐰′𝚺𝐰
  

 

The sum of these risk contributions must add up to 

give total portfolio risk: 

σ𝑃 = ∑ RC𝑖

𝑁

𝑖=1

  

 

Since the portfolio volatility is the sum of 

contributions, the relative contribution of asset i to 

portfolio volatility is defined as:  

 

RRC𝑖  =  
RC𝑖 

σ𝑃

   

 

The sum of these relative risk contributions must 

equal 1: 

 

1 = ∑ 𝑅𝑅𝐶

𝑁

𝑖=1

  

 

No analytical expression is generally available for the 

asset weights which equalize the risk contributions. 

Numerical methods are employed such that asset 

weights produce a portfolio where each holding has 

the following relative contribution to portfolio risk:   

 

𝑅𝑅𝐶𝑖 =
1

𝑁
 

5. Optimizing portfolios with Random Forest 

Regression techniques 

          Figure 3: Ex-post Efficient Frontier 

 

 

 

 

 

 

 

 

 

 

 

We employ a Random Forest Regressor to predict 

the optimal portfolio weights which will give the 

maximum Sharpe Ratio. This weights variable is 

known as the target. The historical sample data of 

these optimal portfolios is obtained by calculating the 

portfolio risk and return associated with 1 million 

randomly generated weight vectors in each month of 

the sample period and then identifying the one which 

produces the highest Sharpe ratio. We are effectively 

constructing the ex-post efficient frontier and finding 

the ex-post optimal portfolio using the daily realized 

volatility and return in each month. See Figure 3 above 

which shows the ex-post efficient frontier, the set of 
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feasible portfolios and the realized risk and return of 

the optimal portfolio. 

The predictor (or “feature” variable) inputs to the 

Random Forest regressor are the following high 

frequency price-related technical indicators: 

 

(i) Relative Strength Indicator. 

 

𝑅𝑆𝐼 =  100 −  
100 

1 +  𝑅𝑆
 

 

𝑅𝑆 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛 𝑂𝑣𝑒𝑟 𝑝𝑎𝑠𝑡 14 𝑑𝑎𝑦𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠 𝑂𝑣𝑒𝑟 𝑝𝑎𝑠𝑡 14 𝑑𝑎𝑦𝑠
 

 

 

(ii) Percentage Price Oscillator 

 

𝑃𝑃𝑂 =  
12 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴 −   26 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴

26 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴
 × 100 

 

EMA = Exponential moving average 
 

 

(iii) Exponentially Weighted Moving Average. 

 

𝜎̂𝑡+1 = √ 𝜆𝜎𝑡
2 + (1 −  𝜆)𝜇𝑡

2  

 

𝜆= Decay Factor for 14 days 
𝜇2= Squared Daily Return 
𝜎2= Daily Variance 
 

(iv) Short-term percentage price volatility 

 

𝜎̂𝑡+1 = √
1

𝑚
 ∑ 𝜇𝑡

2

𝑚

𝑖=1

 

𝑚= 14 (days) 
 

(v) Rate of Change. 

 

𝑅𝑂𝐶 =  
(𝑃𝑡  −  𝑃𝑡−𝑛 )

𝑃𝑡−𝑛

 × 100 

 

𝑃𝑡= Closing Price 
𝑃𝑡−𝑛= Closing Price 10 days ago 
 

The algorithm for the Random Forest Regression is as 

follows: 

 

1) Draw a bootstrap sample B1 of size N from the 

training data. The training data in our model is 

70% of the total dataset. 

 

2) Randomly select a subset m1 of T features where 

m1<T. The features in our model are high 

frequency technical indicators relating to 

closing price data. 

 

3) From this subset, select the most informative 

feature to form the root node of the decision tree 

by identifying the feature with the lowest sum of 

squared error across the branches. 

 

4) The sum of squared error is calculated as the 

sum of squared differences between each 

individual target value and the expected (mean) 

target value at each branch for that category. The 

target values in our model are the optimal 

weights which resulted in the ex-post maximal 

Sharpe ratio in the bootstrap sample. For 

example, to calculate the SSE of an RSI input: 

 

∑ (𝑦̅𝑅𝑆𝐼>𝑠 − 𝑦𝑛)2

𝑅𝑆𝐼>𝑠

+ ∑ (𝑦̅𝑅𝑆𝐼<𝑠 − 𝑦𝑛)2

𝑅𝑆𝐼<𝑠

 

 

5)  Note that we just use the threshold method to 

convert numerical feature data (the technical 

indicator) into categories (values of the technical 

indicator above/below threshold s). The 

threshold level will impact the SSE. The general 

expression for the objective function is therefore 

the minimization of the sum of squared error via 

the feature and threshold variables.  𝑥𝑚
(𝑛)

< 𝑠 

refers to the numerical value of the mth attribute 

of the nth data point: 

 

min
𝑠

( ∑ min
𝑦

(𝑦̅ − 𝑦𝑛)2

𝑥𝑚
(𝑛)

<𝑠

+ ∑ min
𝑦

(𝑦̅ − 𝑦𝑛)2

𝑥𝑚
(𝑛)

≥𝑠

) 

 

6) Having obtained the best variable/split point 

among the m1, the root node is split into two 

daughter nodes. 
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7) Grow the Random Tree, RT1, by recursively 

repeating steps 2-6 for the remaining elements 

of m1 until the minimum node size is reached. 

 

8) Populate the Random Forest with additional 

trees RT(2…n) by repeating steps 1-7 n number of 

times 

 

The average at each leaf node of each tree will give 

the expected target values determined by the (limited) 

input variables used to build that tree. The average 

values of all the leaf nodes in the forest will give the 

expected target values for all the input variables used 

to build that forest. This forest therefore will predict 

the optimal (Sharpe Ratio-maximizing) asset weights 

for the month, taking all the current technical indicator 

levels as model input values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Root and daughter nodes of constituent 

decison tree in Random Forest 

 

6. Investment Strategy Design 

We limit the investment universe to the 30 largest 

securities in the S&P 500 by market capitalization 

with available price data over the sample period. 

Portfolios are optimized and rebalanced at the 

beginning of every month. We analyze the 

performance of 9 strategies in total:  
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• We introduce two benchmark portfolios, the 

equal-weighted (EW) and cap-weighted (CW) 

indices.  

• We construct two Global Minimum Variance 

(GMV) portfolios formed by the optimal security 

weights, for which the expected return 

corresponds to the target minimum volatility on 

the ex-ante efficient frontier, having been 

supplied with some covariance matrix. This 

obviates the need to forecast returns. In the first 

case, which we call GMV-Sample, the covariance 

matrix is formed by the sample volatilities and 

correlations; in the second case, which we call 

GMV-Shrink, we incorporate robust estimates of 

the covariance matrix by employing the Ledoit-

Wolf procedure. In both cases, the sampling 

period is 12 months.  

• We further construct two Maximal Sharpe Ratio 

(MSR) portfolios formed by the optimal security 

weights which maximize expected return per unit 

of volatility on the ex-ante efficient frontier, 

having been supplied with a vector of mean 

returns and some covariance matrix. In the first 

case, which we call MSR-Sample, the covariance 

matrix is formed by the sample volatilities and 

correlations; in the second case, which we call 

MSR-Shrink, we use the shrunk covariance 

matrix. In both cases, the sampling period is again 

12 months.  

• The Black-Litterman portfolio is constructed by 

drawing on the analyst consensus for each 

security’s 12-month price target, obtained from 

Marketbeat.com. To minimize the importance of 

stale estimates and overweight more recent 

estimates, we calculate the exponential weighted 

moving average of analysts’ price objectives 

using a lambda of 0.8. To ensure that only high 

conviction bets are included, the P Matrix is 

composed of 3 views. The first view over-weights 

the security with the highest expected return and 

under-weights the security with the lowest 

expected return. The corresponding input for this 

view in the Q vector will be the expected 

difference in return between these two assets. The 

second view over-weights the security with the 

second highest expect return and underweights 

the security with the second lowest return.  Again, 

the corresponding input for this view in the Q 

vector will be the expected relative difference in 

return. The same procedure is employed to form 

the remaining view on the assets with the third 

highest and third lowest returns. Views are 

updated every six months and the portfolio is 

rebalanced every month.  

• The Risk Parity Portfolio is built using the sample 

covariance matrix and is rebalanced and 

reoptimized every month.  

• Finally, the portfolio optimized with Random 

Forest techniques builds the ex-post efficient 

frontier and identifies the portfolio with the ex-

post maximal Sharpe ratio using the daily 

volatilities, correlations and returns in each given 

month. These weights of the portfolio with the 

maximal Sharpe ratio in each month are the target 

variables used to train the model. The feature 

variables are the Technical indicator values at the 

beginning of each month. The Random Forest 

portfolio therefore is rebalanced and re-optimized 

every month. 

7. Performance Metrics 

This study employs the following metrics: 

 

(i) Sharpe Ratio. 

 

The Sharpe Ratio measures the return 

achieved per unit of volatility incurred: 

 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 

𝐴𝑛𝑛.  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣.
 

 

(ii) Sortino Ratio. 

 

The Sortino Ratio measures the return 

achieved per unit of downside volatility 

incurred: 

 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =  
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 

𝐴𝑛𝑛. 𝑆𝑒𝑚𝑖 − 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

𝑆𝑒𝑚𝑖 𝐷𝑒𝑣. =  √
1

𝑛
 × ∑ (𝑀𝑒𝑎𝑛 − 𝑟𝑡)2

𝑛

𝑟𝑡<𝑀𝑒𝑎𝑛
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(iii) Conditional Value at Risk. 

 

Conditional Value at Risk, alternatively 

known as Expected Shortfall or Expected 

Tail Loss, refers to the mean loss of portfolio 

value given that a loss is occurring at or 

below a particular q-quantile (for example, 

5% given a confidence level of 95%) 

 

𝐶𝑉𝑎𝑅𝛼  =  −
1 

𝛼
∫ 𝑉𝑎𝑅𝛾(𝑋)𝑑𝑦

𝛼

0
  

 

Where 𝛼 is the threshold level of VaR and 

𝑉𝑎𝑅𝛾 is the Value at Risk at the defined 

confidence level. 

 

(iv) Modified Value at Risk. 

 

Modified VaR, alternatively known as 

Cornish-Fisher VaR, permits the 

computation of the Value-at-Risk for non-

normal with positive or negative skewness  

and fat tails that is, positive excess kurtosis. 

 

 Formally defined, if Gaussian VaR is: 

 

 𝑉𝑎𝑅𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 𝜇 − 𝑧𝑔 𝜎 

 

Where: 𝑧𝑔 is the z-score determined by the 

determined confidence level. 

 

Then: 

 

𝑉𝑎𝑅𝐶𝑜𝑟𝑛𝑖𝑠ℎ 𝐹𝑖𝑠ℎ𝑒𝑟 = 𝜇 − 𝑧𝑐𝑓 𝜎 

 

Where: 𝑧𝑐𝑓 is the adjusted z-score determined 

by  𝑧𝑔 , and the observed skew (S) and 

kurtosis (K) of the distribution of returns: 

 

𝑧𝑐𝑓 = 𝑧𝑔 +
1

6
 (𝑧𝑔

2 − 1)𝑆

+
1

24
 (𝑧𝑔

3 − 3𝑧𝑔 )𝐾

−
1

36
 (2𝑧𝑔

3 − 5𝑧𝑔 )𝑆2 

 

 

 

 

 

(v) Maximum Drawdown. 

 

Maximum drawdown is defined as the peak-

to-trough decline of an investment during a 

specific period. It is usually quoted as a 

percentage of the peak value. 

 

𝑀𝑎𝑥 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 =  
𝑃 − 𝐿 

𝑃 
 

 

Where: 𝑃 is the peak value before the largest 

drop in value and 𝐿 is the lowest value before 

the new high is established. 

8. Implementation in Python 

The complete code to implement the risk analysis   

and performance evaluation of the described strategies 

is presented in order for the reader to verify the results, 

expand or modify the study and provide granularity in 

terms of strategy design and backtesting methodology.  

 

8.1. Define Parameters for raw data import and 

storage 

1. # Import the python libraries   
2. import pandas as pd   

3. import numpy as np   
4. from datetime import datetime   

5. import matplotlib.pyplot as plt   
6.    

7. # Selection of Securities and Date
 Range    

8. Securities = "MSFT AAPL AMZN GOOG 
NVDA BRK-

A JNJ V PG JPM UNH MA INTC VZ HD T

 PFE MRK PEP WMT BAC XOM DIS KO CV

X CSCO CMCSA WFC BA ADBE"   

9. Start = "2016-06-30"   

10. End = "2020-06-30"   
11. # Select File Type for upload of S

ecurity Data   

12. filetype =".csv"   

13. # Specify Local Storage Location  
  

14. path = r"C:\Users\delga\Desktop\NY
U\CQF_Work\Portfolio_Management"   

15. #Convert data parameters to string
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16. Sec_Dates = Securities,Start, End 
  

17. def convertTuple(tup):    
18.     str =  '_'.join(tup)    

19.     return str   
20. conv = convertTuple(Sec_Dates)   

21. print(conv)   
22. # Converted data parameters + File

type = Filename   

23. filename = conv+filetype   

24. print(filename)   
25. # Join path, filename & filetype f

or single reference "File"   

26. import os    

27. File = os.path.join(path,filename)
   

28. print(File)   

8.2. Import save and inspect raw data. 

1. import yfinance a s yf   

2. data = yf.download(Securities, sta
rt=Start, end=End)   

3.    
4. # Save Data   

5. data.to_csv(File)   
6.    

7. # Inspect the first 5 lines of the
 saved CSV file   

8. f =open(File,"r")   
9. f.readlines()[:5]  

 

8.3. Create dataframe to house daily prices. Clean 

data structure 

 
1. #The filename passed to the pd.rea

d_csv() function creates the daily

 price dataframe.   

2. #Specified that the first two rows

 shall be handled as an headers.   

3. #Specified that the first column s

hall be handled as an index.   

4. #Specified that the index values a

re of type datetime   

5. df_csv = pd.read_csv(File, header=

 [0,1], index_col=0, parse_dates=T

rue,)   

6. df_csv.info()   
7.    

8.  

9. # Define string and substring to c
ount securities in portfolio. Redu

ce Dataframe to daily adj close fo

r 30 securities   

10. string = Securities   
11. substring = " "   

12. Sec_count = string.count(substring
)+1   

13.    
14. df_csv = df_csv.iloc[:,0:Sec_count

]   

15. df_csv   

16.    
17. # Create single level header from 

multilevel header    

18. df_csv.columns = df_csv.columns.ma

p('|'.join).str.strip('|')   

19. print(df_csv.columns)   

20.    
21. df_csv.columns = df_csv.columns.st

r.replace(r'Adj Close|$', '')   

22.    

23. df_csv.columns = df_csv.columns.st
r.lstrip('|')  # strip suffix at t

he right end only.   

24. df_csv.info()   

25.    
26. # Identify null values in dataset 

  

27. df_csv.isnull().any()   

28.    
29. # Drop null values in dataset   

30. df_csv = pd.DataFrame(df_csv.dropn
a().round(2))   

31. df_csv.info()   

 

8.4. Inspect asset prices and daily and monthly 

returns, 

 
1. # Plot Daily Price Evolution   

2. df_csv.plot(figsize=(12, 60), subp
lots=True);   

3.    
4. # Calculate and plot daily returns

   

5. returns_daily = df_csv.pct_change(

)   

6. returns_daily.plot(figsize=(12, 60

), subplots=True);   

7.    

8. # Calculate and plot monthly retur
ns (from first day of each mth)   
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9. """Date Offset  
10. """   

11. prices_BOM = df_csv.resample("BMS"
).first()   

12. prices_BOM   
13.    

14. # Calculate monthly returns   
15. ind_return = prices_BOM.pct_change

()   

16. ind_return   

17.    
18. # Remove null values and format da

tetime index   

19. ind_return = ind_return.dropna().r

ound(4)   

20. ind_return   

21.    
22. ind_return.index = pd.to_datetime(

ind_return.index, format="%Y%m").t

o_period('M')   

23. ind_return   
24.    

25. # plot monthly returns   
26. ind_return.plot(figsize=(12, 60), 

subplots=True); 

 

8.5. Construct cap-weighted benchmark, 

 
1. #Import   

2. ind_mktcap = pd.read_excel("mktcap
_2008_2020.xlsx", sheet_name='Mkt_

Cap', index_col=0, parse_dates=Tru

e)   

3. ind_mktcap   
4.    

5. #Slice by specified starting and e
nding dates   

6. ind_mktcap =ind_mktcap.loc[Start:E
nd]   

7. ind_mktcap   
8.    

9. #Date Format   
10. ind_mktcap.index = pd.to_datetime(

ind_mktcap.index, format="%Y%m").t

o_period('M')   

11. ind_mktcap   
12.    

13. # Compute and inspect price evolut
ion of benchmark   

14.  
15. total_mktcap = ind_mktcap.sum(axis

="columns")   

16. total_mktcap.plot(figsize=(12,6));
   

17.    
18.  # Compute benchmark capweights   

19. ind_capweight = ind_mktcap.divide(
total_mktcap, axis="rows")   

20. ind_capweight = ind_capweight.iloc
[0:]   

21. ind_capweight   
22.    

23. #Check that sum to one   
24. ind_capweight.sum(axis="columns") 

  

25.    

26. # Compute monthly market return   
27. total_market_return = (ind_capweig

ht * ind_return).sum(axis="columns

")   

28. total_market_return   
29.    

30. total_market_return.plot();   
31.    

32. total_market_index = 1000*(1+total
_market_return).cumprod()   

33. total_market_index.plot(title="Mar

ket Cap Weighted Index");  

 

8.6. Construct equal-weighted benchmark 

 
1. n_ew = ind_return.shape[1]   
2. w_ew = np.repeat(1/n_ew, n_ew)   

3. ind_equalweight = ind_capweight.mu
ltiply(1/ind_capweight/n_ew, axis=

"rows")   

4. ind_equalweight   

5.    
6. # Calculate monthly return   

7. total_eqweighted_return = (ind_equ
alweight * ind_return).sum(axis="c

olumns")   

8. total_eqweighted_return.plot();   

9.    
10. # Calculate evolution of price of 

equal-weighted index   

11. total_eqweighted_index = 1000*(1+t

otal_eqweighted_return).cumprod() 

  

12. total_eqweighted_index.plot(title=
"Equal Cap Weighted Index");   

13.   
14.   
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15. # Compare evolution of prices of c
ap-weighted and equal-

weighted index   

16. total_market_index.plot(title="Mar

ket Cap Weighted Index", label="Mk

t-weighted", legend=True)   

17. total_eqweighted_index.plot(title=
"Equal Cap Weighted Vs. Market Cap

 Weighted Indices", label="Eq-

weighted", legend=True);  

 
 

8.7. Programs to compute expected return vector 

and sample covariance matrix 

 

1. def annualize_rets(r, periods_per_ye
ar):   

2.     """  
3.     Gives the annualized return. Tak

es a times series of returns and the

ir periodicity as arguments  

4.     """   
5.     compounded_growth = (1+r).prod()

   

6.     n_periods = r.shape[0]   

7.     return compounded_growth**(perio
ds_per_year/n_periods)-1   

8.    
9. def annualize_vol(r, periods_per_yea

r):   

10.     """  

11.     Gives the annualized volatility.
 Takes a times series of returns and

 their periodicity as arguments.  

12.     """   

13.     return r.std()*(periods_per_year
**0.5)   

14.    
15. rf = 0.00   

16. ann_factor = 12   
17. er = annualize_rets(ind_return, ann_

factor)   

18. ev = annualize_vol(ind_return, ann_f

actor)   

19. corr = ind_return.corr()   

20. cov = ind_return.cov()   
21. covmat_ann = cov*(ann_factor) 
 

 

8.8. Programs to compute risk adjusted 

performance measures 

 

1. def sharpe_ratio(r, riskfree_rate, p

eriods_per_year):   

2.     """  

3.     Computes the annualized sharpe r
atio of a set of returns  

4.     """   
5.     # convert the annual riskfree ra

te to per period   

6.     rf_per_period = (1+riskfree_rate

)**(1/periods_per_year)-1   

7.     excess_ret = r - rf_per_period   

8.     ann_ex_ret = annualize_rets(exce
ss_ret, periods_per_year)   

9.     ann_vol = annualize_vol(r, perio
ds_per_year)   

10.     return ann_ex_ret/ann_vol   
11.    

12. import scipy.stats   
13. def is_normal(r, level=0.01):   

14.     """  
15.     Applies the Jarque-

Bera test to determine if a Series i

s normal or not  

16.     Test is applied at the 1% level 
by default  

17.     Returns True if the hypothesis o
f normality is accepted, False other

wise  

18.     """   

19.     if isinstance(r, pd.DataFrame): 
  

20.         return r.aggregate(is_normal
)   

21.     else:   
22.         statistic, p_value = scipy.s

tats.jarque_bera(r)   

23.         return p_value > level   

24.    
25. def drawdown(return_series: pd.Serie

s):   

26.     """Takes a time series of asset 

returns.  

27.        returns a DataFrame with colu

mns for  

28.        the wealth index,   

29.        the previous peaks, and   
30.        the percentage drawdown  

31.     """   
32.     wealth_index = 1000*(1+return_se

ries).cumprod()   
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33.     previous_peaks = wealth_index.cu
mmax()   

34.     drawdowns = (wealth_index - prev
ious_peaks)/previous_peaks   

35.     return pd.DataFrame({"Wealth": w
ealth_index,    

36.                          "Previous P
eak": previous_peaks,    

37.                          "Drawdown":
 drawdowns})   

38.    
39. def semideviation(r):   

40.     """  
41.     Returns the semideviation aka ne

gative semideviation of r  

42.     r must be a Series or a DataFram

e, else raises a TypeError  

43.     """   

44.     if isinstance(r, pd.Series):   
45.         is_negative = r < 0   

46.         return r[is_negative].std(dd
of=0)   

47.     elif isinstance(r, pd.DataFrame)
:   

48.         return r.aggregate(semidevia
tion)   

49.     else:   
50.         raise TypeError("Expected r 

to be a Series or DataFrame")   

51.    

52. def var_historic(r, level=5):   
53.     """  

54.     Returns the historic Value at Ri
sk at a specified level  

55.     i.e. returns the number such tha
t "level" percent of the returns  

56.     fall below that number, and the 
(100-level) percent are above  

57.     """   
58.     if isinstance(r, pd.DataFrame): 

  

59.         return r.aggregate(var_histo

ric, level=level)   

60.     elif isinstance(r, pd.Series):   

61.         return -
np.percentile(r, level)   

62.     else:   
63.         raise TypeError("Expected r 

to be a Series or DataFrame")   

64.    

65.    
66. def cvar_historic(r, level=5):   

67.     """  

68.     Computes the Conditional VaR of 
Series or DataFrame  

69.     """   
70.     if isinstance(r, pd.Series):   

71.         is_beyond = r <= -
var_historic(r, level=level)   

72.         return -
r[is_beyond].mean()   

73.     elif isinstance(r, pd.DataFrame)
:   

74.         return r.aggregate(cvar_hist
oric, level=level)   

75.     else:   
76.         raise TypeError("Expected r 

to be a Series or DataFrame")   

77.    

78.    
79. from scipy.stats import norm   

80. def var_gaussian(r, level=5, modifie
d=False):   

81.     """  
82.     Returns the Parametric Gauusian 

VaR of a Series or DataFrame  

83.     If "modified" is True, then the 

modified VaR is returned,  

84.     using the Cornish-

Fisher modification  

85.     """   

86.     # compute the Z score assuming i
t was Gaussian   

87.     z = norm.ppf(level/100)   
88.     if modified:   

89.         # modify the Z score based o
n observed skewness and kurtosis   

90.         s = skewness(r)   
91.         k = kurtosis(r)   

92.         z = (z +   
93.                 (z**2 - 1)*s/6 +   

94.                 (z**3 -3*z)*(k-
3)/24 -   

95.                 (2*z**3 - 5*z)*(s**2
)/36   

96.             )   
97.     return -

(r.mean() + z*r.std(ddof=0))   

98.    

99. def skewness(r):   
100.     """  

101.     Alternative to scipy.stats.sk

ew()  

102.     Computes the skewness of the 

supplied Series or DataFrame  

103.     Returns a float or a Series  

104.     """   
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105.     demeaned_r = r - r.mean()   

106.     # use the population standard

 deviation, so set dof=0   

107.     sigma_r = r.std(ddof=0)   

108.     exp = (demeaned_r**3).mean() 

  

109.     return exp/sigma_r**3   

110.    

111.    

112. def kurtosis(r):   

113.     """  

114.     Alternative to scipy.stats.ku

rtosis()  

115.     Computes the kurtosis of the 

supplied Series or DataFrame  

116.     Returns a float or a Series  

117.     """   

118.     demeaned_r = r - r.mean()   

119.     # use the population standard

 deviation, so set dof=0   

120.     sigma_r = r.std(ddof=0)   

121.     exp = (demeaned_r**4).mean() 

  

122.     return exp/sigma_r**4   

123.    

124. from scipy import stats   

125. for column in ind_return:   

126.     stats.probplot(ind_return[col

umn], dist="norm", plot=plt)   

127.     plt.show() 

 

8.9. Construct efficient frontier based on classical 

Markowitz model 

 

1. # Define functions for portfolio ret
urn and volatility   

2.    
3. def portfolio_return(weights, return

s):   

4.     """  

5.     Computes the return on a portfol
io from constituent returns and weig

hts  

6.     """   

7.     return weights.T @ returns   
8.    

9.    
10. def portfolio_vol(weights, covmat): 

  

11.     """  

12.     Computes the vol of a portfolio 
from a covariance matrix and constit

uent weights  

13.     """   

14.     vol = (weights.T @ covmat @ weig
hts)**0.5   

15.     return vol    
16.    

17. # Program to return optimal weights 
for maximization of Sharpe ratio   

18.    
19. from scipy.optimize import minimize 

  

20.    

21. def msr(riskfree_rate, er, cov):   
22.     """  

23.     Returns the weights of the portf
olio that gives you the maximum shar

pe ratio  

24.     given the riskfree rate, an expe

cted returns vector and a covariance

 matrix  

25.     """   
26.     n = er.shape[0] # Input for init

ial guess   

27.     init_guess = np.repeat(1/n, n) #

 Equal Weighting for init_guess   

28.     bounds = ((0.0, 1.0),) * n # Min

imum and maximum individual allocati

on (No shorting constraint)   

29.     # Define the constraint: Sum of 
portfolio weights variable minus one

 must equal zero. ("Equality" Constr

aint)   

30.     weights_sum_to_1 = {'type': 'eq'
,   

31.                         'fun': lambd
a weights: np.sum(weights) - 1   

32.     }   
33.     def neg_sharpe(weights, riskfree

_rate, er, cov):   

34.         """  

35.         Defining the objective funct
ion which we seek to minimize:  

36.         The investor seeks weights t
o maximise Sharpe ratio (Excess Ret/

Vol), for given return vector, cov m

atrix and rfr.  

37.         Equivalent to minimizing the
 negative of this ratio.  

38.         """   
39.         r = portfolio_return(weights

, er)   
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40.         vol = portfolio_vol(weights,
 cov)   

41.         return -
(r - riskfree_rate)/vol   

42.        
43.     # Scipy optimize function takes 

obj fun; init guess, input args for 

obj fun, constraints on total weight

s, boundaries   

44.     # for individual weights, the op

timization method   

45.     weights = minimize(neg_sharpe, i

nit_guess,   

46.                        args=(riskfre

e_rate, er, cov), method='SLSQP',   

47.                        options={'dis

p': False},   

48.                        constraints=(

weights_sum_to_1,),   

49.                        bounds=bounds

)   

50.     return weights.x   

51.    
52. # Program to return optimal weights 

to minimize vol for a given target r

eturn   

53.    
54. def minimize_vol(target_return, er, 

cov):   

55.     """  

56.     Returns the optimal weights that
 achieve the target return  

57.     given a set of expected returns 
and a covariance matrix  

58.     """   
59.     n = er.shape[0]   

60.     init_guess = np.repeat(1/n, n)   
61.     bounds = ((0.0, 1.0),) * n # an 

N-tuple of 2-tuples!   

62.     # construct the constraints   

63.     weights_sum_to_1 = {'type': 'eq'
,   

64.                         'fun': lambd
a weights: np.sum(weights) - 1   

65.     }   
66.     return_is_target = {'type': 'eq'

,   

67.                         'args': (er,

),   

68.                         'fun': lambd

a weights, er: target_return - portf

olio_return(weights,er)   

69.     }   

70.     weights = minimize(portfolio_vol
, init_guess,   

71.                        args=(cov,), 
method='SLSQP',   

72.                        options={'dis
p': False},   

73.                        constraints=(
weights_sum_to_1,return_is_target), 

  

74.                        bounds=bounds

)   

75.     return weights.x   

76.    
77. # Weighting scheme returning optimal

 weights for minimization of global 

min. variance   

78.    
79. def gmv(cov):   

80.     """  
81.     Returns the weights of the Globa

l Minimum Volatility portfolio  

82.     given a covariance matrix  

83.     """   
84.     n = cov.shape[0]   

85.     return msr(0, np.repeat(1, n), c
ov) #Exp. ret set to 1 for all secur

ities    

86.    

87. # Weighting scheme returning  equal 
weighted portfolio.    

88. def weight_ew(r):   
89.     """  

90.     Returns the weights of the EW po
rtfolio based on the asset returns "

r" as a DataFrame  

91.     """   

92.     n = len(r.columns)   
93.     ew = pd.Series(1/n, index=r.colu

mns)   

94.     return ew   

95.    
96. def optimal_weights(n_points, er, co

v):   

97.     """  

98.     Returns a list of weights that r
epresent a grid of n_points on the e

fficient frontier given a range of   

99.     target returns (from the lowest 

expected return to the highest expec

ted return)  

100.     """   

101.     target_rs = np.linspace(er.mi

n(), er.max(), n_points)   
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102.     weights = [minimize_vol(targe

t_return, er, cov) for target_return

 in target_rs]   

103.     return weights   

104.    

105. def plot_ef(n_points, er, cov, st

yle='.-

', legend=False, show_cml=False, ris

kfree_rate=0, show_ew=False, show_gm

v=False):   

106.     """  

107.     Plots the multi-

asset efficient frontier using the "

optimal weights" function  

108.     """   

109.     weights = optimal_weights(n_p

oints, er, cov)   

110.     rets = [portfolio_return(w, e

r) for w in weights]   

111.     vols = [portfolio_vol(w, cov)

 for w in weights]   

112.     ef = pd.DataFrame({   

113.         "Returns": rets,    

114.         "Volatility": vols   

115.     })   

116.     ax = ef.plot.line(x="Volatili

ty", y="Returns", style=style, legen

d=legend)   

117.     ax.set_title('Figure 1: Ex-

Ante Efficient Frontier (June 2020)'

)   

118.     plt.xlabel('Volatility')   

119.     plt.ylabel('Returns')   

120.     if show_cml:   

121.         ax.set_xlim(left = 0)   

122.         # get MSR   

123.         w_msr = msr(riskfree_rate

, er, cov)   

124.         r_msr = portfolio_return(

w_msr, er)   

125.         vol_msr = portfolio_vol(w

_msr, cov)   

126.         # add CML   

127.         cml_x = [vol_msr]   

128.         cml_y = [r_msr]   

129.         ax.plot(cml_x, cml_y, col

or='red', marker="*", linestyle='das

hed', linewidth=2, markersize=18, la

bel='msr')   

130.         plt.annotate("MSR", xy=(v

ol_msr, r_msr), ha='right', va='bott

om', rotation=45)   

131.     if show_ew:   

132.         n = er.shape[0]   

133.         w_ew = np.repeat(1/n, n) 

  

134.         r_ew = portfolio_return(w

_ew, er)   

135.         vol_ew = portfolio_vol(w_

ew, cov)   

136.         # add EW   

137.         ax.plot([vol_ew], [r_ew],

 color='green', marker='o', markersi

ze=10, label='ew')   

138.         plt.annotate("EW", xy=(vo

l_ew, r_ew), horizontalalignment='ri

ght', verticalalignment='bottom', ro

tation=45)   

139.     if show_gmv:   

140.         w_gmv = gmv(cov)   

141.         r_gmv = portfolio_return(

w_gmv, er)   

142.         vol_gmv = portfolio_vol(w

_gmv, cov)   

143.         # add GMV   

144.         ax.plot([vol_gmv], [r_gmv

], color='goldenrod', marker="D", ma

rkersize=12, label='gmv')   

145.         plt.annotate("GMV", xy=(v

ol_gmv, r_gmv), horizontalalignment=

'right', verticalalignment='bottom',

 rotation=45)   

146.         return ax   

147.    

148. # Display eff. frontier   

149. plot_ef(100, er, covmat_ann, styl

e='.-

', legend=False, show_cml=True, risk

free_rate=rf, show_ew=True, show_gmv

=True); 

 

8.10. Shrink Covariance Matrix 

 
1. def sample_cov(r, **kwargs):   

2.     """  
3.     Returns the sample covariance of

 the supplied returns  

4.     """   

5.     return r.cov()   
6.    

7. def cc_cov(r, **kwargs):   
8.     """  

9.     Estimates a covariance matrix by
 using the Elton/Gruber Constant Cor

relation model  

10.     """   
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11.     rhos = r.corr()   
12.     n = rhos.shape[0]   

13.     # this is a symmetric matrix wit
h diagonals all 1  

14.     rho_bar = (rhos.values.sum()-
n)/(n*(n-1))   

15.     ccor = np.full_like(rhos, rho_ba
r)   

16.     np.fill_diagonal(ccor, 1.)   
17.     sd = r.std()   

18.     return pd.DataFrame(ccor * np.ou
ter(sd, sd), index=r.columns, column

s=r.columns)   

19.    

20. def shrinkage_cov(r, delta=0.5, **kw
args):   

21.     """  
22.     Covariance estimator that shrink

s between the Sample Covariance and 

the Constant Correlation Estimators  

23.     """   
24.     prior = cc_cov(r, **kwargs)   

25.     sample = sample_cov(r, **kwargs)
   

26.     return delta*prior + (1-
delta)*sample   

27.    
28. # Reconstruct eff. frontier with shr

unken covar. matrix   

29. plot_ef(100, er, shrink_cov_ann, sty

le='.-

', legend=False, show_cml=True, risk

free_rate=rf, show_ew=True, show_gmv=Tr
ue); 

 

8.11. Design Risk Parity Portfolio 

 
1. def risk_contribution(w,cov):   
2.     """  

3.     Compute the relative contributio
ns to risk of the constituents of a 

portfolio, given a set of portfolio 

weights   

4.     and a covariance matrix  
5.     """   

6.     total_portfolio_var = portfolio_
vol(w,cov)**2   

7.     # Marginal contribution of each 
constituent to portfolio variance   

8.     marginal_contrib = cov@w  
9.   

10.     # Relative contribution of each 
constituent to portfolio variance (r

isk)   

11.     risk_contrib = np.multiply(margi

nal_contrib,w.T)/total_portfolio_var

   

12.     return risk_contrib   
13.    

14. from scipy.optimize import minimize 
  

15.    
16. def target_risk_contributions(target

_risk, cov):   

17.     """  

18.     Returns a portfolio with constit
uent security weights such  

19.     that their risk contributions to
 the portfolio are as close as possi

ble to  

20.     the target_risk contributions fo

r a given the covariance matrix.  

21.     """   

22.     n = cov.shape[0]   
23.     init_guess = np.repeat(1/n, n)   

24.     bounds = ((0.0, 1.0),) * n # an 
N-tuple of 2-tuples   

25.     # construct the constraints   
26.     weights_sum_to_1 = {'type': 'eq'

,   

27.                         'fun': lambd

a weights: np.sum(weights) - 1   

28.     }   

29.     def msd_risk(weights, target_ris
k, cov):   

30.         """  
31.         The objective function: Mini

mise the Sum of Squared Differences 

in the risk contributions to the por

tfolio  

32.         and the target_risk contribu

tions via the asset weights decision

 variable   

33.         """   
34.         w_contribs = risk_contributi

on(weights, cov)   

35.         return ((w_contribs-

target_risk)**2).sum()   

36.        

37.     weights = minimize(msd_risk, ini
t_guess,   

38.                        args=(target_
risk, cov), method='SLSQP',   

39.                        options={'dis
p': False},   
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40.                        constraints=(
weights_sum_to_1,),   

41.                        bounds=bounds
)   

42.     return weights.x   
43.    

44. def equal_risk_contributions(cov):   
45.     """  

46.     Returns the weights of the portf
olio that equalizes the risk contrib

utions  

47.     of the constituents based on the

 given covariance matrix  

48.     """   

49.     n = cov.shape[0]   
50.     return target_risk_contributions

(target_risk=np.repeat(1/n,n), cov=c

ov)   

51.    
52. def weight_erc(r, cov_estimator=samp

le_cov, **kwargs):   

53.     """  

54.     Produces the weights of the ERC 
portfolio given a returns series and

 covariance matrix strucrure.   

55.     """   

56.     est_cov = cov_estimator(r, **kwa
rgs)   

57.     return equal_risk_contributions(
est_cov)   

58.    
59. def target_risk_contributions(target

_risk, cov):   

60.     """  

61.     Returns a portfolio with constit
uent security weights such  

62.     that their risk contributions to
 the portfolio are as close as possi

ble to  

63.     the target_risk contributions fo

r a given the covariance matrix.  

64.     """   

65.     n = cov.shape[0]   
66.     init_guess = np.repeat(1/n, n)   

67.     bounds = ((0.0, 1.0),) * n # an 
N-tuple of 2-tuples   

68.     # construct the constraints   
69.     weights_sum_to_1 = {'type': 'eq'

,   

70.                         'fun': lambd

a weights: np.sum(weights) - 1   

71.     }   

72.     def msd_risk(weights, target_ris
k, cov):   

73.         """  
74.         The objective function: Mini

mise the Sum of Squared Differences 

in the risk contributions to the por

tfolio  

75.         and the target_risk contribu

tions via the asset weights decision

 variable   

76.         """   
77.         w_contribs = risk_contributi

on(weights, cov)   

78.         return ((w_contribs-

target_risk)**2).sum()   

79.        

80.     weights = minimize(msd_risk, ini
t_guess,   

81.                        args=(target_
risk, cov), method='SLSQP',   

82.                        options={'dis
p': False},   

83.                        constraints=(
weights_sum_to_1,),   

84.                        bounds=bounds
)   

85.     return weights.x   
86.    

87. def equal_risk_contributions(cov):   
88.     """  

89.     Returns the weights of the portf
olio that equalizes the risk contrib

utions  

90.     of the constituents based on the

 given covariance matrix  

91.     """   

92.     n = cov.shape[0]   
93.     return target_risk_contributions

(target_risk=np.repeat(1/n,n), cov=c

ov)   

94.    
95. def weight_erc(r, cov_estimator=samp

le_cov, **kwargs):   

96.     """  

97.     Produces the weights of the ERC 
portfolio given a returns series and

 covariance matrix strucrure.   

98.     """   

99.     est_cov = cov_estimator(r, **kwa
rgs)   

100.     return equal_risk_contributio

ns(est_cov)   

101.    

102. # RRC of ERC portfolio   

103. RRC_erc = risk_contribution(equal

_risk_contributions(cov), cov)   
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104. RRC_erc.plot.bar(title="Relative 

(%) Risk Contributions of an ERC por

tfolio");   

105.    

106. # Portfolio composition of ERC st

rategy. (Numpy array)   

107. weight_erc(ind_return, cov_estima

tor=sample_cov)   

108.    

109. # Portfolio composition of ERC st

rategy. (DataFrame)   

110. numpy_weight_erc = weight_erc(ind

_return, cov_estimator=sample_cov)   

111. df_weight_erc = pd.DataFrame(data

=numpy_weight_erc, index=ind_return.

columns,  columns=["ERC Asset Alloca

tion"])   

112. df_weight_erc   

113.    

114. # Portfolio vol of ERC strategy   

115. Port_vol_erc = portfolio_vol(weig

ht_erc(ind_return), cov)   

116. Port_vol_erc   

117.    

118. # Risk Contribution ERC strategy 

  

119. RC_erc = RRC_erc * Port_vol_erc   

120. RC_erc.plot.bar(title="($) Risk C

ontributions of an ERC portfolio");  

 

8.12. Design Black-Litterman Optimized Portfolio 

 

1. # Lookback period   

2.    
3. BL_per_beg_1 = Start   

4. BL_per_end_1 = End   
5.    

6.    
7. # Market inputs: rfr. exp returns ve

ctor, sample covariance matrix   

8. rf_1 = 0.00   

9. ann_factor_1 = 12   
10. er_1 = annualize_rets(ind_return[BL_

per_beg_1:BL_per_end_1] , ann_factor

)   

11. ev_1 = annualize_vol(ind_return[BL_p
er_beg_1:BL_per_end_1], ann_factor) 

  

12. corr_1 = ind_return[BL_per_beg_1:BL_

per_end_1].corr()   

13. cov_1 = ind_return[BL_per_beg_1:BL_p

er_end_1].cov()   

14.    
15. # Data for Views Vector, q   

16.    
17. View_1 = 0.20   

18. View_2 = 0.10   
19. View_3 = 0.05   

20.    
21. # Data for Pick Matrix, p   

22.    
23. Long_1 = 'T'   

24. Short_1 = 'JPM'   
25. Long_2 = 'V'   

26. Short_2 = 'GOOG'   
27. Long_3 = 'UNH'   

28. Short_3 = 'MA'   
29.    

30. # Specify investable universe.   
31. assets = list(ind_return.columns)   

32. assets   
33.    

34. # Calculate correlation matrix and c
onvert to Dataframe   

35. rho = corr_1   
36. rho   

37.    
38. # Calculate expected volatilities of

 securities   

39. vols = pd.DataFrame(ev_1, columns=["

Vols"])   

40. vols   

41.    
42. # Market weights (optimal assumimg m

arket equilibrium)   

43. w_eq = ind_capweight.loc[BL_per_end_

1]   

44. w_eq   

45.    
46. # Define prior covariance matrix (sa

mple annualised covar matrix here)   

47. sigma_prior = vols.dot(vols.T) * rho

   

48. sigma_prior   

49.    
50. # Compute Equilibrium-

implied returns vector and convert t

o series   

51.    
52. def implied_returns(delta, sigma, w)

:   

53.     """  

54. Obtain the implied expected returns 
by reverse engineering the weights  

55. Inputs:  
56.  
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57. delta: Risk Aversion Coefficient (sc
alar)  

58. sigma: Variance-
Covariance Matrix (N x N) as DataFra

me  

59.     w: Market weights (N x 1) as Ser

ies  

60. Returns an N x 1 vector of Returns a

s Series  

61.     """   

62.     ir = delta * sigma.dot(w).squeez
e() # to get a series from a 1-

column dataframe   

63.     ir.name = 'Implied Returns'   

64.     return ir   
65.    

66. # Compute Pi and compare:   
67. pi = implied_returns(delta=2.5, sigm

a=sigma_prior, w=w_eq)   

68.    

69. # Populate views vector , Q: (X will
 outperform Y by Z%)   

70. q = pd.Series([View_1]) # First view
   

71. # start with a single view and an em
pty Pick Matrix, to be overwritten w

ith the specific pick(s) + view(s)   

72. p = pd.DataFrame([0.]*len(assets), i

ndex=assets).T   

73.    

74. # Pick 1   
75. p.iloc[0][Long_1] = +1.   

76. p.iloc[0][Short_1] = -1   
77. (p*100).round(1)   

78.    
79. # Add second view   

80. view2 = pd.Series([View_2], index=[1
])   

81. q = q.append(view2)   
82. pick2 = pd.DataFrame([0.]*len(assets

), index=assets, columns=[1]).T   

83. p = p.append(pick2)   

84. p.iloc[1][Long_2]=+1   
85. p.iloc[1][Short_2]=-1   

86. np.round(p.T, 3)*100   
87.    

88. # Add third view   
89. view3 = pd.Series([View_3], index=[2

])   

90. q = q.append(view3)   

91. pick3 = pd.DataFrame([0.]*len(assets
), index=assets, columns=[2]).T   

92. p = p.append(pick3)   
93. p.iloc[2][Long_3]=+1   

94. p.iloc[2][Short_3]=-1   
95. np.round(p.T, 3)*100   

96.    
97. # Calculate Omega as proportional to

 the variance of the prior   

98. def proportional_prior(sigma, tau, p

):   

99.     """  

100.     Returns the He-

Litterman simplified Omega  

101.     Inputs:  

102.     sigma: N x N Covariance Matri

x as DataFrame  

103.     tau: a scalar  

104.     p: a K x N DataFrame linking 

Q and Assets  

105.     returns a P x P DataFrame, a 

Matrix representing Prior Uncertaint

ies  

106.     """   

107.     helit_omega = p.dot(tau * sig

ma).dot(p.T)   

108.     # Make a diag matrix from the

 diag elements of Omega   

109.     return pd.DataFrame(np.diag(n

p.diag(helit_omega.values)),index=p.

index, columns=p.index)   

110.    

111. # Program to compute the posterio

r expected returns based on the orig

inal black litterman reference model

   

112.    

113. from numpy.linalg import inv   

114.    

115. def bl(w_prior, sigma_prior, p, q

,   

116.                 omega=None,   

117.                 delta=2.5, tau=.0

2):   

118.     """  

119. # Computes the posterior expected

 returns based on the original black

 litterman reference model  

120. # W.prior must be an N x 1 vector

 of weights, a Series  

121. # Sigma.prior is an N x N covaria

nce matrix, a DataFrame  

122. # P must be a K x N matrix linkin

g Q and the Assets, a DataFrame  

123. # Q must be an K x 1 vector of vi

ews, a Series  

124. # Omega must be a K x K matrix a 

DataFrame, or None  
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125. # if Omega is None, we assume it 

is proportional to variance of the p

rior  

126. # delta and tau are scalars  

127.     """   

128.     if omega is None:   

129.         omega = proportional_prio

r(sigma_prior, tau, p)   

130.     # Force w.prior and Q to be c

olumn vectors   

131.     # How many assets?   

132.     N = w_prior.shape[0]   

133.     # How many views?   

134.     K = q.shape[0]   

135.     # First, reverse-

engineer the weights to get pi   

136.     pi = implied_returns(delta, s

igma_prior,  w_prior)   

137.     # Adjust (scale) Sigma by the

 uncertainty scaling factor   

138.     sigma_prior_scaled = tau * si

gma_prior     

139.     # posterior estimate of the m

ean, use the "Master Formula"   

140.     # we use the versions that do

 not require   

141.     # Omega to be inverted (see p

revious section)   

142.     # this is easier to read if w

e use '@' for matrixmult instead of 

.dot()   

143.     #     mu_bl = pi + sigma_prio

r_scaled @ p.T @ inv(p @ sigma_prior

_scaled @ p.T + omega) @ (q - p @ pi

)   

144.     mu_bl = pi + sigma_prior_scal

ed.dot(p.T).dot(inv(p.dot(sigma_prio

r_scaled).dot(p.T) + omega).dot(q - 

p.dot(pi).values))   

145.     # posterior estimate of uncer

tainty of mu.bl   

146.     #sigma_bl = sigma_prior + sig

ma_prior_scaled - sigma_prior_scaled

 @ p.T @ inv(p @ sigma_prior_scaled 

@ p.T + omega) @ p @ sigma_prior_sca

led   

147.     sigma_bl = sigma_prior + sigm

a_prior_scaled - sigma_prior_scaled.

dot(p.T).dot(inv(p.dot(sigma_prior_s

caled).dot(p.T) + omega)).dot(p).dot

(sigma_prior_scaled)   

148.     return (mu_bl, sigma_bl)   

149.    

150. # Specify scalars   

151.    

152. delta = 2.5   

153. tau = 0.05    

154.    

155. # Derive the Black Litterman Expe

cted Returns   

156. bl_mu, bl_sigma = bl(w_eq, sigma_

prior, p, q, omega=None, delta=delta

, tau= tau)   

157. (bl_mu*100).round(2)   

158.    

159. (bl_sigma*100).round(2)   

160.    

161. # for convenience and readability

, define the inverse of a dataframe 

  

162. def inverse(d):   

163.     """  

164.     Invert the dataframe by inver

ting the underlying matrix  

165.     """   

166.     return pd.DataFrame(inv(d.val

ues), index=d.columns, columns=d.ind

ex)   

167.    

168. def w_msr(sigma, mu, scale=True):

   

169.     """  

170.     Optimal (Tangent/Max Sharpe R

atio) Portfolio weights  

171.     by using the Markowitz Optimi

zation Procedure  

172.     Mu is the vector of Excess ex

pected Returns  

173.     Sigma must be an N x N matrix

 as a DataFrame and Mu a column vect

or as a Series  

174.     """   

175.     w = inverse(sigma).dot(mu)   

176.     if scale:   

177.         w = w/sum(w) # fix: this 

assumes all w is +ve   

178.     return w   

179.    

180. # Optimal BL portfolio weights   

181. bl_port = w_msr(bl_sigma,bl_mu)   

182. bl_port.plot(kind='bar')   

183.    

184. # Name BL optimal portfolio   

185. alt_wstar = (w_msr(sigma=bl_sigma

, mu=bl_mu,scale=True)*100).round(4)

   

186. alt_wstar   

187.    
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188. # Transpose & Export for Backtest

ing purposes   

189. df_alt_wstar = pd.DataFrame(alt_w

star, columns=[ind_return.index[-

1]]).T   

190. #df_alt_wstar.to_excel("BL_WEIGHT

S4.5.xlsx", sheet_name=End)   

191. df_alt_wstar    

192.    

193. # Test: Market inputs should give

 market weights as output   

194. w_eq_check  = w_msr(delta*sigma_p

rior, pi, scale=False)   

195. w_eq_check   

196.    

197. # BL-

implied Alpha : BL Exp Returns - Equ

ilibrium Impl. Returns   

198.    

199. Exp_Active_ret = (((bl_mu) - (pi)

)*(100)).round(2)   

200. Exp_Active_ret.plot(kind='bar', t

itle = "BL-

implied Active Return");   

201.    

202. # Display the difference in Poste

rior and Prior weights    

203. Active_weight = np.round(wstar - 

w_eq/(1+tau), 3)*100   

204.    

205. Active_weight.plot(kind='bar', ti

tle = "BL-implied Active Weight");  

 

8.13. Optimization with Random Forest 

 
1. # Use Cleaned Closing Price Data   

2. full_df = df_csv   
3. full_df    

4.    
5. # Resample the full DataFrame to mon

thly timeframe   

6. monthly_df = full_df.resample('BMS')

.first()   

7. # Calculate daily returns of stocks 

  

8. returns_daily = full_df.pct_change()

   

9. # Calculate monthly returns of the s

tocks   

10. returns_monthly = monthly_df.pct_cha

nge().dropna()   

11. # Suffix to column name   

12. returns_monthly.columns += '_RET'   
13.    

14. print(returns_monthly.tail())   
15.    

16. # Compute Daily covariance of stocks
 for each historical monthly period 

  

17.    

18. # Create Empty dictionary for each m
onth's daily covariances   

19. covariances = {}   
20.    

21. # Extract all dates relating to each
 trading day in the daily return tim

es series   

22. rtd_idx = returns_daily.index   

23.    
24.     

25. for i in returns_monthly.index:   
26.     # Mask daily returns for each mo

nth and year. Masks are an array of 

boolean values for which a condition

    

27.     is met.    

28.     # In this instance, for each mon
th-

year of the monthly returns index, t

he mask identifies as "True" where  

  

29.     # the index of daily returns has

 a matching month-year timestamp.   

30.     # The resulting boolean arrays i

s used to isolate data in the origin

al data array ie daily returns in    

31.     each looped month   
32.        

33.     mask = (rtd_idx.month == i.month
) & (rtd_idx.year == i.year)   

34.        
35. # The covariance calculation is perf

ormed on daily data in each monthly 

period   

36.     covariances[i] = returns_daily[m
ask].cov()   

37.    
38. covariances   

39.    
40. # Obtain 1,000,000 potential portfol

io performances for each month via r

andom iterations of the weights vect

or.   

41.    

42. portfolio_returns, portfolio_volatil
ity, portfolio_weights = {}, {}, {}  
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43.    
44. # For each key value (BOM date) in t

he covariances dictionary, return th

e covariance in that calendar month.

    

45. for date in sorted(covariances.keys(

)):   

46.     cov = covariances[date]   

47.     # Randomly iterate 1,000,000 tim
es the weights vector for the 30 ass

ets   

48.     for portfolio in range(1000000):

   

49.         weights = np.random.random(c

ov.shape[0])   

50.         weights /= np.sum(weights) #

 /= divides weights by their sum to 

normalize    

51.         returns = np.dot(weights, re
turns_monthly.loc[date])   

52.         volatility = np.sqrt(np.dot(
weights.T, np.dot(cov, weights)))   

53.         # The setdefault() method re
turns the value of the appended item

 with the specified key. (Like    

54.         Vlookup)   

55.         portfolio_returns.setdefault
(date, []).append(returns)   

56.         portfolio_volatility.setdefa
ult(date, []).append(volatility)   

57.         portfolio_weights.setdefault
(date, []).append(weights)   

58.    
59. print(portfolio_weights[date][0])   

60.    
61. import matplotlib.pyplot as plt   

62.    
63. # Plot efficient frontier for latest

 month of available data   

64. date = sorted(covariances.keys())[-

1]     

65. latest_returns = portfolio_returns[d

ate]   

66. latest_vol = portfolio_volatility[da

te]   

67. # define your figure then plot infor

mation in that space   

68. plt.figure(figsize=(14,8))   

69. plt.scatter(x=latest_vol, y= latest_
returns, alpha=0.5, cmap='RdYlBu')   

70. plt.axis([0.014, 0.030, 0.028, 0.10]
)   

71.    
72.  

73. # Identify point on eff frontiier wi
th maximal sharpe ratio in that mont

h   

74. max_sharpe_coord = max_sharpe_idxs[d

ate]   

75.    

76. # Place an red star on the point wit
h the best Sharpe ratio   

77. plt.scatter(x=latest_vol[max_sharpe_
coord], y=latest_returns[max_sharpe_

coord], marker=(5,1,0),color='r',s=1

000)   

78.    
79. # Label axes   

80. plt.xlabel('Volatility')   
81. plt.ylabel('Returns')   

82.    
83. # Display   

84.    
85. plt.show()   

86.    
87. # Library to import technical indica

tors   

88. import talib   

89.    
90. # 1. Calculate exponentially-

weighted moving average of daily ret

urns   

91. ewma_daily = returns_daily.ewm(span=
14).mean()   

92.    
93. # Resample daily returns to first bu

siness day of the month with the fir

st day for that month   

94. ewma_monthly = ewma_daily.resample('
BMS').first()   

95.    
96. # Shift ewma for the month by 1 mont

h forward so we can use it as a feat

ure for future predictions    

97. ewma_monthly = ewma_monthly.shift(1)
.dropna()   

98.    
99. # Rename Columns    

100. ewma_monthly.columns += '_EWMA'   

101.    

102. ewma_monthly   

103.    

104. # 2. Calculate standard deviation

 of daily returns   

105. sd_daily = returns_daily.apply(la

mbda colseries: talib.STDDEV(colseri

es,  timeperiod=14, nbdev=1))   

106.    
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107. # Resample daily returns to start

ing business day of the month with t

he first day for that month   

108. sd_monthly = sd_daily.resample('B

MS').first()   

109.    

110. # Shift sd for the month by 1 mon

th forward so we can use it as a fea

ture for future predictions    

111. sd_monthly = sd_monthly.shift(1).

dropna()   

112.    

113. # Rename Columns    

114. sd_monthly.columns += '_SD'   

115.    

116. sd_monthly   

117.    

118. # 3. Calculate Rate of Change of 

Price   

119. ROC_daily = full_df.apply(lambda 

colseries: talib.ROC(colseries, time

period=10))   

120.    

121. # Resample daily ROC to starting 

business day of the month with the f

irst day for that month   

122. ROC_monthly = ROC_daily.resample(

'BMS').first()   

123.    

124. # Shift sd for the month by 1 mon

th forward so we can use it as a fea

ture for future predictions    

125. ROC_monthly = ROC_monthly.shift(1

).dropna()   

126.    

127. # Rename Columns    

128. ROC_monthly.columns += '_ROC'   

129.    

130.    

131. ROC_monthly   

132.    

133. # 4. Calculate RSI   

134. RSI_daily = full_df.apply(lambda 

colseries: talib.RSI(colseries, time

period=14))   

135.    

136. # Resample daily RSI to starting 

business day of the month with the f

irst day for that month   

137. RSI_monthly = RSI_daily.resample(

'BMS').first()   

138.    

139.  

140. # Shift sd for the month by 1 mon

th forward so we can use it as a fea

ture for future predictions    

141. RSI_monthly = RSI_monthly.shift(1

).dropna()   

142.    

143. # Rename Columns    

144. RSI_monthly.columns += '_RSI'   

145.    

146.    

147. RSI_monthly   

148.    

149. # 5. Calculate PPO   

150. PPO_daily = full_df.apply(lambda 

colseries: talib.PPO(colseries, fast

period=12, slowperiod=26, matype=0))

   

151.    

152. # Resample daily RSI to starting 

business day of the month with the f

irst day for that month   

153. PPO_monthly = PPO_daily.resample(

'BMS').first()   

154.    

155. # Shift sd for the month by 1 mon

th forward so we can use it as a fea

ture for future predictions    

156. PPO_monthly = PPO_monthly.shift(1

).dropna()   

157.    

158. # Rename Columns    

159. PPO_monthly.columns += '_PPO'   

160.    

161. PPO_monthly   

162.    

163. # Collect Tech Indicators in Data

frame   

164. Tech_Ind_df = pd.concat([ewma_mon

thly,sd_monthly, ROC_monthly, RSI_mo

nthly, PPO_monthly], axis=1)   

165. Tech_Ind_df = Tech_Ind_df.dropna(

)   

166. Tech_Ind_df.info()   

167.    

168. # Create features from Technical 

Indicators and targets from historic

ally optimal security weights   

169. targets_wt, features_ti = [], [] 

  

170.    

171. for date, row in Tech_Ind_df.iter

rows():   

172.    



 Risk Analysis and Performance Evaluation in Asset Management 30 

173.     # Get the index number of the

 best sharpe ratio for each date   

174.     best_idx = max_sharpe_idxs[da

te]   

175.     # Use the maximal sharpe rati

o for each date to find optimal port

folio weights on that date   

176.     targets_wt.append(portfolio_w

eights[date][best_idx])    

177.     # add Technical Indicators to

 features   

178.     features_ti.append(Tech_Ind_d

f)    

179.    

180. # Convert list of target (optimal

) weights to numpy array   

181. targets_wt_array = np.array(targe

ts_wt)   

182.    

183. # Then to dataframe   

184. targets_wt_df = pd.DataFrame(data

 = targets_wt_array, columns= full_d

f.columns, index=Tech_Ind_df.index) 

  

185. targets_wt_df.info()   

186.    

187. # Create complete Dataframe of we

ights, returns and Tech Indicators   

188. ft_trg_df = pd.concat([Tech_Ind_d

f, returns_monthly, targets_wt_df], 

axis=1)   

189. ft_trg_df= ft_trg_df.dropna()   

190.    

191. # Calculate correlation matrix fo

r complete dataframe   

192. Target_Feat_corr = ft_trg_df.corr

()   

193. Target_Feat_corr   

194.    

195. # Plot heatmap of correlation mat

rix   

196. import seaborn as sns   

197. plt.figure(figsize=(14,8))   

198. sns.heatmap(Target_Feat_corr, ann

ot=False, annot_kws = {"size": 11}, 

cmap='RdYlGn')   

199. plt.yticks(rotation=0, size = 1);

 plt.xticks(rotation=90, size = 1)  

# fix ticklabel directions and size 

  

200. plt.tight_layout()  # fits plot a

rea to the plot, "tightly"   

201. plt.show()  # show the plot   

202.   

203. # Create features and targets dat

frames   

204. ret_names = returns_monthly.colum

ns   

205. ft_names = Tech_Ind_df.columns   

206. tg_names = full_df.columns   

207.    

208. mret = ft_trg_df[ret_names]    

209. ft = ft_trg_df[ft_names]    

210. tg = ft_trg_df[tg_names]    

211.    

212. # Create training set + testing s

et for features and targets   

213.    

214. # Create a size for the training 

set that is 85% of the total number 

of samples   

215. train_size_1 = int(0.85 * ft.shap

e[0])   

216.    

217. # Apply the trainsize to obtain a

 (starting) chronological subset of 

the features data to train the algo 

  

218. train_features_1 = ft[:train_size

_1]   

219. # Apply trainsize to obtain a (st

arting) chronological subset of the 

target data to train algo   

220. train_targets_1 = tg[:train_size_

1]   

221.    

222. # Apply trainsize to obtain an (e

nding) chronological subset of the f

eatures data to test algo   

223. test_features_1 = ft[train_size_1

:]   

224. # Apply trainsize to obtain an (e

nding) chronological subset of the t

argets data to test algo   

225. test_targets_1 = tg[train_size_1:

]   

226.    

227. # Inspect dimensions   

228. print(train_features_1.shape, tes

t_features_1.shape)   

229. print(train_targets_1.shape, test

_targets_1.shape)   

230.    

231. # Specify model with default para

meters   

232. rfr_1 = RandomForestRegressor(n_e

stimators=1000, random_state=42)   

233. # Run Model   
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234. rfr_1.fit(train_features_1, train

_targets_1)   

235. # Output Model Explanatory Power 

  

236. print(rfr_1.score(train_features_

1, train_targets_1))   

237. print(rfr_1.score(test_features_1

, test_targets_1))   

238.    

239. # Specify hyperparameters to be t

uned   

240.    

241. from sklearn.model_selection impo

rt RandomizedSearchCV   

242. # Number of trees in random fores

t   

243. n_estimators = [int(x) for x in n

p.linspace(start = 200, stop = 2000,

 num = 10)]   

244. # Number of features to consider 

at every split   

245. max_features = [int(x) for x in n

p.linspace(start = 10, stop =150, nu

m = 30)]   

246. # Maximum number of levels in tre

e   

247. max_depth = [int(x) for x in np.l

inspace(10, 150, num = 20)]   

248. max_depth.append(None)   

249. # With Replacement?   

250. bootstrap = [True, False]   

251. # Create the random grid   

252. random_grid = {'n_estimators': n_

estimators,   

253.                'max_features': ma

x_features,   

254.                'max_depth': max_d

epth,   

255.                'bootstrap': boots

trap}   

256. print(random_grid)   

257.    

258. # Use the random grid to search f

or best hyperparameters using 10 fol

d cross validation and 100,000 itera

tions   

259. # search across 10000 different c

ombinations, and use all available c

ores   

260. rf_random = RandomizedSearchCV(es

timator = rfr_1, param_distributions

 = random_grid, n_iter = 100,    

261.     cv = 5, verbose=2, random_sta

te=42, n_jobs = -1)   

262. # Fit the random search model   

263. rf_random.fit(train_features_1, t

rain_targets_1)   

264.    

265. # Identify best hyparameters   

266. rf_random.best_params_   

267.    

268. # Re-

specify model with tuned hyperparame

ters   

269. rfr_random = RandomForestRegresso

r(n_estimators=1200, random_state=42

, max_features=10, max_depth= 83)   

270. # Run Model   

271. rfr_random.fit(train_features_1, 

train_targets_1)   

272. # Output Model Explanatory Power 

  

273. print(rfr_random.score(train_feat

ures_1, train_targets_1))   

274. print(rfr_random.score(test_featu

res_1, test_targets_1))   

275.    

276. # Import tools needed for visuali

zation   

277. from sklearn.tree import export_g

raphviz   

278. import pydotplus   

279. from IPython.display import Image

     

280. # Pull out one tree from the fore

st   

281. tree = rfr_random.estimators_[6] 

  

282. # Export the image to a dot file 

  

283. export_graphviz(tree, out_file = 

'tree.dot', feature_names = ft_names

, rounded = True, precision = 4)   

284. # Use dot file to create a graph 

  

285. graph = pydotplus.graph_from_dot_

file('tree.dot')   

286. # Write graph to a png file   

287. Image(graph.create_png())   

288. # Save PNG   

289. graph.write_png("tree_ex.png")   

290.    

291. # Get security weight predictions

 from model on train and test   

292. train_predictions_1 = rfr_random.

predict(train_features_1)   

293. test_predictions_1 = rfr_random.p

redict(test_features_1)   
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294.    

295. # Calculate and plot returns from

 our RF predictions   

296. test_returns_1 = np.sum(mret.iloc

[train_size_1:] * test_predictions_1

, axis=1)   

297. plt.plot(test_returns_1, label='a

lgo')   

298.    

299. plt.legend()   

300. plt.show()   

301.    

302. # Generate portfolio return in te

st period   

303. test_returns_1   

304.    

305. # Calculate cumulative return of 

RF-optimized portfolio   

306. cash = 1000   

307. algo_cash =  [cash]  # set equal 

starting cash amounts   

308. for r in test_returns_1:   

309.     cash *= 1 + r   

310.     algo_cash.append(cash)   

311.    

312. print('algo returns:', (algo_cash

[-

1] - algo_cash[0]) / algo_cash[0])   

313.    

314. # Get feature importances from ou

r random forest model   

315. importances_1 = rfr_random.featur

e_importances_   

316.    

317. # Get the index of importances fr

om greatest importance to least   

318. sort_index = np.argsort(importanc

es_1)[::-1]   

319. x = range(len(importances_1))   

320.    

321. # Create tick labels    

322. plt.figure(figsize=(16,10))   

323. labels = np.array(ft_names)[sort_

index]   

324. plt.bar(x, importances_1[sort_ind

ex], tick_label=labels)   

325.    

326. # Rotate tick labels to vertical  

327. plt.xticks(rotation=90)   

328. plt.show()   

8.14. Generate historic returns for strategies 

 

1. def weight_ew(r, cap_weights=None, 
max_cw_mult=None, microcap_threshol

d=None, **kwargs):   

2.     """  

3.     Returns the weights of the EW p
ortfolio based on the asset returns

 "r" as a DataFrame  

4.     If supplied a set of capweights

 and a capweight tether, it is appl

ied and reweighted   

5.     """   
6.     n = len(r.columns)   

7.     ew = pd.Series(1/n, index=r.col
umns)   

8.     if cap_weights is not None:   
9.         cw = cap_weights.loc[r.inde

x[0]] # starting cap weight   

10.         ## exclude microcaps   

11.         if microcap_threshold is no
t None and microcap_threshold > 0: 

  

12.             microcap = cw < microca

p_threshold   

13.             ew[microcap] = 0   

14.             ew = ew/ew.sum()   
15.         #limit weight to a multiple

 of capweight   

16.         if max_cw_mult is not None 

and max_cw_mult > 0:   

17.             ew = np.minimum(ew, cw*

max_cw_mult)   

18.             ew = ew/ew.sum() #rewei

ght   

19.     return ew   

20.    
21. def weight_cw(r, cap_weights, **kwa

rgs):   

22.     """  

23.     Returns the weights of the CW p
ortfolio based on the time series o

f capweights  

24.     """   

25.     w = cap_weights.loc[r.index[11]
]# Index number Must match Estimati

on Window!!!   

26.     return w/w.sum()   

27.    
28. def weight_gmv(r, cov_estimator=sam

ple_cov, **kwargs):   

29.     """  

30.     Produces the weights of the GMV
 portfolio given a covariance matri

x of the returns   

31.     """   
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32.     est_cov = cov_estimator(r, **kw
args)   

33.     return gmv(est_cov)   
34.    

35. def weight_erc(r, cov_estimator=sam
ple_cov, **kwargs):   

36.     """  
37.     Produces the weights of the ERC

 portfolio given a covariance matri

x of the returns   

38.     """   
39.     est_cov = cov_estimator(r, **kw

args)   

40.     return equal_risk_contributions

(est_cov)   

41.    

42. def weight_msr(r, cov_estimator=sam
ple_cov, **kwargs):   

43.     """  
44.     Produces the weights of the MSR

 portfolio given a ret series and c

ovariance matrix structure   

45.     """   
46.     est_cov = cov_estimator(r, **kw

args)   

47.     exp_ret = annualize_rets(r, 12,

**kwargs)   

48.     return msr(0,exp_ret, est_cov) 

  

49.    

50. # Create Security Weighting Scheme 
for Black-Litterman Portfolios   

51. ind_blcap = pd.read_excel("mktcap_2
008_2020.xlsx", sheet_name='BL_WTS'

, index_col=0, parse_dates=True)   

52. ind_blcap =ind_blcap.loc[Start:End]

   

53. ind_blcap.index = pd.to_datetime(in

d_blcap.index, format="%Y%m").to_pe

riod('M')   

54. total_blcap = ind_blcap.sum(axis="c
olumns")   

55.    
56. ind_blweight = ind_blcap.divide(tot

al_blcap, axis="rows")   

57. ind_blweight = ind_blweight.iloc[0:

]   

58. ind_blweight   

59.    
60. total_bl_return = (ind_blweight * i

nd_return).sum(axis="columns")   

61. total_bl_return   

62.    

63. total_bl_index = drawdown(total_bl_
return).Wealth   

64. total_bl_index.plot(title="BL Weigh
ted Index");   

65.    
66. # Specify Estimation Window   

67. estimation_window=12   
68.    

69. # MSR Returns (sample cov)   
70. MSRr_sample = backtest_ws(ind_retur

n, estimation_window=estimation_win

dow, weighting=weight_msr, cov_esti

mator=sample_cov)   

71. # MSR Returns (shrink cov)   

72. MSRr_shrink = backtest_ws(ind_retur
n, estimation_window=estimation_win

dow, weighting=weight_msr, cov_esti

mator=shrinkage_cov)   

73.    
74. # GMV Returns (sample cov)   

75. GMVr_sample = backtest_ws(ind_retur
n, estimation_window=estimation_win

dow, weighting=weight_gmv, cov_esti

mator=sample_cov)   

76. # GMV Returns (shrink cov)   
77. GMVr_shrink = backtest_ws(ind_retur

n, estimation_window=estimation_win

dow, weighting=weight_gmv, cov_esti

mator=shrinkage_cov)   

78.    

79. # ERC Returns (sample cov)   
80. ERCr_sample = backtest_ws(ind_retur

n, estimation_window=estimation_win

dow, weighting=weight_erc, cov_esti

mator=sample_cov)   

81. # ERC Returns (shrink cov)   

82. ERCr_shrink = backtest_ws(ind_retur
n, estimation_window=estimation_win

dow, weighting=weight_erc, cov_esti

mator=shrinkage_cov)   

83.    
84. # Random Forest Strategy Returns   

85. outsamp_test_ret = test_returns_1.i
loc[-36:]   

86. outsamp_test_ret   
87.    

88. # Extract values, remove time-
stamp   

89. outsamp_tr_val = outsamp_test_ret.v
alues   

90. outsamp_tr_val   
91.    

92. # Re-index   
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93. outsamp_tr_ser = pd.Series(data=out
samp_tr_val)   

94. new_index = ewr['2017-07':].index   
95. outsamp_tr_dtser = pd.Series(data=o

utsamp_tr_val, index=new_index )   

96. outsamp_tr_dtser   

97.    
98. # Collect Out-of-

Sample Returns in DataFrame   

99. btr_outsample = pd.DataFrame({   

100.                     "EW": ewr['20
17-07':],    

101.                     "CW": cwr['20
17-07':],    

102.                     "MSR-
Sample": MSRr_sample['2017-

07':],    

103.                     "MSR-

Shrink": MSRr_shrink['2017-07':],   

104.                     "GMV-

Sample": GMVr_sample['2017-

07':],    

105.                     "GMV-
Shrink": GMVr_shrink['2017-

07':],    

106.                     "ERC": ERCr_s

ample['2017-07':],   

107.                     "RF": outsamp

_tr_dtser,   

108.                     "B-

L": total_bl_return['2017-07':]   

109.                     })   

110. # View DataFrame   
111. btr_outsample   

112.    
113. # Compute Cumulative Return   

114. cum_ret_outsample = (1+btr_outsam
ple).cumprod()   

115. cum_ret_outsample   
116.    

117. # Plot Compunded Return   
118. (1+btr_outsample).cumprod().plot(

figsize=(16,12), title="Strategies 

Cumulative Return"); 

 

8.15. Generate Performance Metrics 

 
1. def summary_stats(r, riskfree_rate=

rf):   

2.     """  

3.     Return a DataFrame that contain
s aggregated summary stats for the 

returns in the columns of r  

4.     """   

5.     ann_r = r.aggregate(annualize_r
ets, periods_per_year=12)   

6.     ann_vol = r.aggregate(annualize
_vol, periods_per_year=12)   

7.     ann_sr = r.aggregate(sharpe_rat
io, riskfree_rate=riskfree_rate, pe

riods_per_year=12)   

8.     dd = r.aggregate(lambda r: draw

down(r).Drawdown.min())   

9.     skew = r.aggregate(skewness)   

10.     kurt = r.aggregate(kurtosis)   
11.     ann_semi_dev = r.aggregate(semi

deviation) * math.sqrt(ann_factor) 

  

12.     cf_var5 = r.aggregate(var_gauss
ian, modified=True)   

13.     hist_cvar5 = r.aggregate(cvar_h
istoric)   

14.     rovol = ann_r/ann_vol   
15.     ann_sortino = ann_r/ann_semi_de

v   

16.     rovar_cvar = ann_r/hist_cvar5   

17.     rocvar_cfvar = ann_r/cf_var5   
18.     radd = ann_r/-dd   

19.     return pd.DataFrame({   
20.         "Annualized Return": ann_r,

   

21.         "Annualized Volatility": an

n_vol,   

22.         "Ann. Semi-

Dev.": ann_semi_dev,   

23.         "Skewness": skew,   

24.         "Kurtosis": kurt,   
25.         "Modified VaR (5%)": cf_var

5,   

26.         "Historic CVaR (5%)": hist_

cvar5,   

27.         "Max Drawdown": dd,   

28.         "Sharpe Ratio": ann_sr,   
29.         "Sortino Ratio": ann_sortin

o,   

30.          })   

31.    
32. # Display Results   

33. summary_stats(btr_outsample.dropna(
)).round(4) 
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9. Results 

10. Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5: Performance in Total Period 

  Figure 4: Compounded Return in Total Period  
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  Figure 6: Compounded Return in Out-of-Sample Period  

  Figure 7: Performance in Out-of-Sample Period  
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11. Conclusions 

The GMV-Shrink portfolio is clearly the best 

performer over the total period. It suffers the lowest 

volatility and has the highest Sharpe ratio. The returns 

distribution is the least fat-tailed (kurtotic) and the 

second least negatively skewed resulting in the lowest 

Modified Value-at-Risk. It also achieves the lowest 

values for Conditional Value-at-Risk and Maximum 

Drawdown. Additionally, it achieves the lowest semi-

deviation which gives it the second highest Sortino 

Ratio. The MSR-Sample Portfolio achieves the 

highest Sortino Ratio, due to a significantly higher 

annualized return though the investor would be 

obliged to assume higher dispersion of returns and 

significantly greater tail risk. The MSR-Shrink 

portfolio fails to outperform the MSR-Sample 

portfolio because, in the portfolio selection process, 

the higher mean assets returns are not adequately 

penalized by higher volatilities. Error maximization is 

more pronounced. The Equal-Weighted Portfolio 

outperforms the Cap-Weighted benchmark in terms of 

return per unit of risk, achieving superior Sharpe and 

Sortino Ratios. However, the investor in the EW 

strategy would be obliged to assume higher tail risk, 

as indicated by the greater values of Modified VaR, 

Conditional VaR and Maximum Drawdown. The 

performance of the Equal Risk Contribution (ERC) 

portfolio disappoints. It outperforms the Equal-

Weighted (EW) and Cap-Weighted (CW) Indices in 

terms of Sortino and Sharpe Ratios though 

underperforms all other portfolios. Moreover, tail risk 

incurred is higher than that of EW and CW. 

The starting 70% of the total data is used as the 

chronological subset to train the Random Forest 

model. The remaining data is the chronological subset 

used to test the model. The predicted portfolio weights 

in this out-of-sample test period are multiplied by 

actual security returns to generate the RF strategy 

returns which are then compared to those other 

strategies. The Black-Litterman (B-L) portfolio is 

constructed over this same period using the evolving 

explicit Price Targets available for all constituent 

securities. The GMV-Shrink Portfolio generates the 

second best Sharpe and Sortino ratios in this truncated 

period of elevated volatility. However, it is clearly and 

significantly outperformed by the Black-Litterman 

portfolio in these categories. Most notably, in terms of 

performance attribution analysis, as the Coronavirus 

crisis developed in 2020, the portfolio benefited from 

the strong returns resulting from the overweighting of 

Tech stocks and underweighting of Financials. In 

general, over the entire out-of-sample period the 

strong annualized return of B-L more than 

compensates for additional volatility and semi-

deviation, resulting in the highest Sharpe and Sortino 

Ratios. Of additional note is that the B-L returns 

distribution has the lowest negative skew. The RF 

portfolio underperforms the Cap-Weighted 

Benchmark in terms of the Sharpe and Sortino Ratios 

and approximately equals the CW benchmark in terms 

of tail risk (Modified VaR, Conditional VaR, Max 

Drawdown). 

We find evidence that both robust portfolio risk and 

return estimates produce portfolios capable of 

outperformance. It would be instructive to test the 

resilience of this tentative conclusion by expanding the 

study to encompass different time frames and 

international (non-US) equity markets. The under-

performance of the RF portfolio should not necessarily 

be interpreted as a condemnation of the model but 

rather the feature variables (the specific technical 

indicators) used as inputs to the model. Further work 

should be done to see if volume-based or 

macroeconomic-orientated data could yield more 

favorable results. 
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