
 Risk Analysis and Performance Evaluation in Asset Management 1

Robust Portfolio Optimization: An Empirical Analysis of the
Risk-Adjusted Performance of Equity Strategies Constructed with

Classical, Bayesian and Machine-Learning Techniques.

Paul C. McAteer*

*MS (NYU, Stern School of Business), MBA (IE Business School)

Pre-Print: 30h June 2020

Abstract

This study reviews the empirical evidence over the last decade of the risk-adjusted outperformance of US equity portfolios

constructed with robust optimization techniques. The performance of such portfolios is compared to a market-weighted index,

a naively diversified (equal-weighted) strategy, Maximal Sharpe Ratio and Global Minimum Variance portfolios constructed

within the classical Markowitz optimization framework, a Risk Parity Portfolio and a portfolio optimized with Random Forest

techniques. The results confirm that the utilization of robust covariance and return estimators in the portfolio design process

yielded significant relative outperformance on a risk-adjusted basis. The paper provides detailed code in Python to facilitate

investors’ practical implementation of the strategies and to enable academics to easily replicate and interrogate the results.

Key words: Portfolio optimization; Robust estimators; Parameter estimation error; Black-Litterman; Ledoit-Wolf; Machine Learning;

Random Forest; Portfolio risk analysis; Portfolio performance analysis; Portfolio construction; Risk Parity; Markowitz; Efficient Frontier

1. Introduction

In spite of the theoretically resilient underpinnings

of robust portfolio optimization techniques,

prospective (and existing) users of the Black-

Litterman and Ledoit-Wolf procedures – which

produce robust return and covariance matrix estimates

respectively – continue to confront uncertainties

regarding the intuition behind the models, their

practical implementation and their merit, that is, their

capacity to generate out-performance. With respect to

the challenges of both comprehension and application,

———

e-mail: pcm353@stern.nyu.edu

it is instructive to merely conduct a brief survey of the

promises of enlightenment contained in the titles of

papers published since Black-Litterman’s original

pioneering work of 1991: “The Intuition Behind

Black-Litterman Model Portfolios” (He and

Litterman, 1999); “A Demystification of the Black-

Litterman Model” (Satchell and Scowcroft, 2000); “A

Step-by-Step Guide to the Black-Litterman Model”

(Izadorek, 2004); “The Black-Litterman Model

Explained” (Cheung, 2010); “Deconstructing Black-

Litterman” (Michaud, 2013) and “Reconstructing the

Black-Litterman Model” (Walters, 2014).

RISK ANALYSIS AND PERFORMANCE EVALUATION IN ASSET

MANAGEMENT

 Risk Analysis and Performance Evaluation in Asset Management 2

This paper provides a concise synthesis of the

conceptual foundations of the robust portfolio

optimization techniques without sacrificing analytical

rigour. I situate the Ledoit-Wolf and Black-Litterman

optimization procedures within the broader theoretical

context of Harry Markowitz’s Modern Portfolio

Theory and progress to discuss novel alternative

approaches to diversification and optimization,

namely Risk Parity and Random Forest. I provide a

detailed computational framework in open-source

code which will enable the reader to construct the

portfolios, re-specify model parameters and backtest

performance using standard metrics. Finally, I utilize

this framework to examine the evidence in the US

equity market over the last decade as to whether robust

estimation techniques have indeed proved capable of

producing portfolios which generate relative risk-

adjusted outperformance. Performance will be

compared to two market benchmarks, a market-

weighted index (MW), and an equal-weighted (EW)

index, as well as common alternative strategies,

namely Maximal Sharpe Ratio (MSR) and Global

Minimum Variance (GMV) portfolios constructed

within the classical Markowitz optimization

framework, a Risk Parity Portfolio (Equal Risk

Contribution - ERC) and a portfolio optimized with

Random Forest (RF) techniques. The guiding

objective is to provide clarity on model construction,

implementation, and value.

2. Literature Review

Since the publication in 1952 of Harry Markowitz’s

seminal work, Portfolio Selection [1], the mean-

variance methodology has been the dominant solution

to the portfolio selection problem. The optimal

portfolio is formed by the rational investor who

allocates wealth to assets within her investable

universe such that she maximizes expected (mean)

return for a given risk level, represented by portfolio

variance and estimated by the sample covariance

matrix of historic asset returns. The set of optimal

portfolios for all risk levels defines the efficient

frontier. Merton (1972) [2] allowed for the relaxation

of the short selling constraint within the context of the

classical Mean-Variance Optimization solution.

Academics and practitioners have since confronted

multiple challenges related to the practical application

of the model, particularly, the sensitivity of the

“optimal” portfolio to the estimation error of expected

return and volatility. Michaud (1989) [3] contended

that Mean-Variance Optimization gave rise to error-

maximizing and under-performing portfolios, stating

that “The main problem with MVO is its tendency to

maximize the effects of errors in the input assumptions

[which]… can yield results that are inferior to those of

simple equal-weighting schemes” The latter comment

on underperformance references earlier work

undertaken by Jobson and Korkie (1981) [4]. Michaud

further observes that MVO tends to produce

unintuitive, concentrated portfolios noting that the

model “significantly over-weights those securities that

have large estimated returns, negative correlations and

small variances”. From the perspective of inferential

statistics Stein (1956) [5] insisted on the

“Inadmissibility of the Usual Estimator of the Mean of

a Multivariate Normal Distribution”. Best and Grauer

(1991) [6] highlighted the extreme sensitivity of

portfolio design to changes in the mean return vector.

Similarly Chopra (1993) [7] together with Ziemba

(1993) [8] demonstrated that small changes to the

mean values of variances can result in radically

different “optimal” portfolios.

Given the described issues with the estimator

inputs, many academics came to focus on Bayes-Stein

shrinkage estimation, a technique formulated by Stein

(1956) [5] and further developed by James and Stein

(1961) [9]. In essence, these estimators are generally

formed by shrinking an observed prior estimate of the

population mean towards an updated estimator, which

incorporates some additional information, in order to

obtain a posterior estimate, which is a weighted

average of the two. The weights are determined by

some shrinkage factor. The updated estimated value

may draw on properties of the statistical distribution of

the observed data or incorporate exogenous

information. This paper leverages the Black-Litterman

model (1991,1992) [10] [11] which seeks to provide

robust estimates of security returns and the Ledoit-

Wolf (2013, 2014) [12] [13] shrinkage technique

which aims to generate robust estimates of the

covariance matrix. The former produces a weighted

average of security returns implied by market

equilibrium and the investor’s subjective expectations.

The latter generates a posterior covariance matrix

which is a weighted average of the observed sample

 Risk Analysis and Performance Evaluation in Asset Management 3

covariance matrix and a covariance matrix obtained by

using Elton and Gruber’s (1973, 1978) [14] [15]

constant correlation model in which the correlation

coefficients are equal to the mean of the sample

correlation coefficients.

In the aftermath of the Global Financial Crisis, risk

management came to rival performance management

as a driving objective of portfolio optimization. This

increased the theoretical and practical interest in the

risk parity portfolio, defined as a strategy which seeks

to constrain each asset such that they contribute

equally to portfolio volatility. Risk Parity portfolios

gained favor as the academic literature and its

proponents in the Hedge Fund industry proliferated.

Noteworthy contributions to the academic discourse

include papers by Roncalli et al. (2009, 2012) [16]

[17]. The advocacy of Ray Dalio and the performance

of the Bridgewater “All Weather” asset allocation

strategy further helped increase the popularity of so-

called Equal Risk Contribution strategies.

Traditionally portfolio optimization has focused on

the ex-ante optimal portfolio based on estimates of

future risk and returns. Novel machine learning

techniques applied to the portfolio selection problem

tend to rely on identifying the ex-post optimal

portfolios over an historical time series which serve as

a dependent (or “target”) variable, and which one then

seeks to explain as a function of a large number of

independent (or “feature”) variables. Breiman

developed the concept of the Random Forest (2001)

[18], a supervised machine learning algorithm based

on ensemble learning, which combines multiple

Classification and Regression Trees (CART)

(Breiman et al.,1984) [19] using Bagging (Breiman,

1996) [20]. Bagging is a process which aggregates the

results of multiple decision trees trained on random

subsets of the features and bootstrapped1 samples of

the training data to grow a forest of “random” trees.

He posited that ensembles of decision trees could

produce highly accurate predictions of target variables

whilst handling a large number of input variables

without overfitting. The random forest algorithm can

be used for both regression and classification tasks.

Yang (2013) [21] demonstrated the application of the

———
1 In the jargon, resampling with replacement is referred to as
bootstrapping. The term “Bagging” derives from the practice of both

Bootstrapping and Aggregating the results.

technique to modelling portfolio risk whilst Khaidem

et al (2016) [22] applied it to stock price prediction

using technical indicators as the feature variables.

3. Theory of Optimal Portfolio Construction

Traditional portfolio optimization theory adheres

to the notion that the objective of a rational investor is

to select the portfolio which minimizes risk for any

given level of expected return amongst the set of all

possible portfolios. The set of risk minimizing

portfolios for varying required levels of return are

described as optimal. The set of all possible portfolios

is called the feasible set. Expected portfolio return is

the weighted average of the expected returns of

portfolio constituents. Portfolio risk refers to the

dispersion of expected portfolio returns, represented

by their historic standard deviation, under the

assumption that these returns are normally distributed.

Alternative definitions of risk incorporate the

assumption of investors’ aversion to semi-variance,

negative skewness, and positive excess kurtosis.

Hodges (1997) [23] formulated an Adjusted Sharpe

Ratio risk measures which incorporate the third and

fourth moments of non-normal return distributions.

Harlow (1991) [24] employed lower partial moments

as a downside risk measure in portfolio selection.

Whilst such risk measures have theoretical and

intuitive appeal, the co-movement of the higher

moments and the lower partial moments has proved

difficult to estimate and the expected diversification

effect within such portfolios has consequently proved

vulnerable to significant estimation error. This paper

therefore retains a return-variance optimization

criterion which solves for the asset allocation, w*, that

maximizes a utility function of the form:

𝜇Π −
𝛾

2
 𝑉Π

Where 𝜇Π is portfolio return, 𝑉Π is portfolio variance

and 𝛾 > 0 represents the degree of risk aversion.

This is the starting point of the classical

Markowitz mean-variance optimization solution,

which will be described in detail. I will then proceed

 Risk Analysis and Performance Evaluation in Asset Management 4

to describe enhancements to the model which address

its well-documented deficiencies by providing robust

estimates for security returns and the variance-

covariance matrix.

3.1. Canonical Markowitz Framework for Mean-

Variance Optimization (MVO)

The true excess returns2 of the constituent

securities in a portfolio are assumed to have a normal

distribution, denoted by:

𝑟 ∼ 𝑁 (𝜇, 𝜎2)

Where 𝜇 is the expected excess return and 𝜎2 the

variance.

The expected excess return of a portfolio is the

weighted sum of the expected excess return on each

constituent asset:

𝜇𝛱 = ∑ 𝑤𝑖

𝑁

𝑖=1

𝜇𝑖

which is written in matrix form as follows:

𝜇𝛱 = 𝒘′𝝁

Where 𝒘′is the transpose of the asset weight vector

and 𝝁 is the vector of expected returns.

The variance of a portfolio is determined by the

weights, variances and covariances on the constituent

assets. For a portfolio of n assets, we obtain the

generalized expression for the variance of the portfolio

returns:

𝑉Π = ∑ 𝑤𝑖
2

𝑁

𝑖=1

𝜎𝑖
2

+ ∑ ∑ 𝑤𝑖𝑤𝑗

𝑁

𝑗=1

𝜌𝑖𝑗

𝑁

𝑖=1

𝜎𝑖𝜎𝑗

Where 𝜌𝑖𝑗 is the correlation between assets i and j.

Employing matrix notation, portfolio variance is

compactly represented a quadratic form of the

———
2 Excess Return refers to the return in excess of the risk-free rate.

covariance matrix and the portfolio weights as

follows:

𝑉Π = 𝒘′𝚺𝒘

Where 𝚺 is an N × N covariance matrix given by:

[

𝜎11 ⋯ 𝜎1𝑁

⋮ ⋱ ⋮
𝜎𝑁1 ⋯ 𝜎𝑁𝑁

]

We denote the joint return distribution of the portfolio

returns as the following multivariate normal

distribution:

𝑅𝑃 ∼ 𝑁 (𝒘′𝝁, 𝒘′𝚺𝒘)

Given this parametrization of portfolio variance

and excess return, we can formulate the mean-variance

optimization problem as an unconstrained quadratic

optimization problem which maximizes investor

utility, U, in the decision variable w:

argmax
𝑤

𝑈 = 𝒘′𝝁 −
1

2
 𝛾 𝒘′𝚺𝒘

Subject to:

𝒘 ⋅ 𝒊 = 𝟏

The optimal weights w* are found by determining the

stationary point of the objective function, which

requires equating the partial derivatives of the weight

variables to zero. The first order condition is

represented thus:

∇𝑈(𝒘∗) =
𝜕𝑉(𝒘∗)

𝜕𝒘
= 𝜇 −

1

2
 ⋅ 2 𝛾 𝚺𝒘∗ = 0

Which simplifies to:

 𝝁 − 𝛾 𝚺𝒘∗ = 0

Which yields the equivalent expression:

 𝝁 = 𝛾 𝚺𝒘∗

 Risk Analysis and Performance Evaluation in Asset Management 5

Which implies the following candidate solution for the

so-called market portfolio:

 𝒘∗ =
1

𝛾
 𝚺−𝟏𝝁

Finally, we examine the Hessian Matrix of second

partial derivatives to determine if it is negative definite

and so confirm we have found a (unique) maximum at

the stationary point:

∇2𝑈(𝒘∗) = H𝑈(𝒘∗) = − 𝛾 𝚺 < 0

The market portfolio is the asset allocation solution

which maximises expected excess return per unit of

risk, that is, it provides the optimal asset weights to

maximise the Sharpe ratio:

max
𝑤

𝒘′𝝁

√𝒘′𝚺𝒘

This Maximal Sharpe Ratio (MSR) portfolio is visible

on the ex-ante efficient frontier depicted in Figure 1

along with the Global Minimum Variance and Equal-

Weighted portfolio. Conceptually, the Global

Minimum Variance portfolio can be considered a

special variant of the MSR where the expected return

for each constituent security is equalised, and asset

weights are purely a function of the covariance matrix.

The EW “naively diversified” portfolio, is dominated

by both the MSR and GMV portfolios.

 Figure 1: Ex-ante Efficient Frontier

3.2. Achieving Robust Return Estimates with the

Black-Litterman Procedure

The Black-Litterman procedure is a Bayesian

shrinkage method, which incorporates (1) The asset

returns implied by market equilibrium, denoted by 𝛱;

and (2) The subjective expectations of asset returns,

formed by a “link” matrix 𝑃 expressing bearishness

or bullishness and a vector 𝑄 expressing expected

relative or absolute returns for these positions. The

result is a vector of posterior expected returns,

denoted by 𝜇̂𝐵𝐿.

The vector of implied equilibrium excess returns

is obtained by a process of reverse-optimization, using

the observed market capitalizations of securities for

weights, the observed sample variance-covariance

matrix and the aggregate risk aversion of market

participants, denoted by 𝛿. 𝛿 is derived from observed

market data in the following manner:

If: 𝛱𝑖 = 𝛽𝑖 [𝐸(𝑅𝑀) − 𝑟𝑓]

Then, equivalently:

𝛱𝑖 =
𝐶𝑜𝑉𝑖,𝑀

𝑉𝑎𝑟𝑀,𝑀

[𝐸(𝑅𝑀) − 𝑟𝑓]

=
[𝐸(𝑅𝑀) − 𝑟𝑓]

𝑉𝑎𝑟𝑀,𝑀

𝐶𝑜𝑉𝑖,𝑀

The first term, [𝐸(𝑅𝑀) − 𝑟𝑓] /𝑉𝑎𝑟𝑀,𝑀, is 𝛿 ,the market

price of risk. Under the assumption that rational

investors will seek to maximize the risk-return tradeoff

on all assets, then the market portfolio will be formed

by rational investors maximizing their utility function

in the weight variable. 𝑤𝜆 denotes asset weights under

conditions of market equilibrium.

argmax
𝑤

{𝒘′𝜫 −
1

2
 𝛿 𝒘′𝚺𝒘} = 𝒘𝝀

Assuming therefore that market capitalization weights

are the product of market participants’ aggregate

efforts to maximize utility and are thus optimal, and

given furthermore that both the sample covariance

matrix and the average risk aversion level are

observable, the derivation of the vector of implied

equilibrium excess returns is trivial:

 Risk Analysis and Performance Evaluation in Asset Management 6

𝜫 = 𝛿 𝚺 𝒘𝝀

This formula moreover supplies further intuition vis-

à-vis the market price of risk. Pre-multiplying both

sides of the previous equation by the transpose of the

weights of the market in equilibrium gives expected

market return as a function of expected market

variance and the risk coefficient:

𝒘𝝀
′ 𝜫 = 𝛿 𝒘𝝀

′ 𝚺 𝒘𝝀

Restating in terms of 𝛿 :

𝛿 =
𝒘𝝀

′ 𝜫

 𝒘𝝀
′ 𝚺 𝒘𝝀

=
𝒘𝝀

′ 𝜫

𝜎𝑚𝑘𝑡
2

 =
𝒘𝒎𝒌𝒕

′ 𝜫

𝜎𝑚𝑘𝑡

 ×
1

𝜎𝑚𝑘𝑡

 = 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜𝑚𝑘𝑡 ×
1

𝜎𝑚𝑘𝑡

The vector of posterior expected returns, 𝝁̂𝑩𝑳, will

be a function of the degree of confidence in the

subjective expected returns relative to the degree of

confidence in the market-implied expected returns.

Essentially, 𝝁̂𝑩𝑳 can be considered as type of complex

weighted average of subjective and market-implied

expected returns where the weights are determined by

the level of confidence in one expected return relative

to the other.

For market implied returns, if uncertainty is

captured by the dispersion or variance of asset returns

in the market equilibrium model, then, intuitively, the

inverse of the sample variance-covariance matrix3 will

reflect the degree of certainty. The greater the

magnitude of variability, the smaller the inverse of 𝚺.

A bounded scalar parameter4 𝜏 may be applied to 𝚺 to

adjust for estimation error. One approach is to set 𝜏 =

1/T= T-1, where T is the number of historical periods

used. Generally, 𝜏 is close to zero. The prior

equilibrium distribution therefore is:

 𝜇𝑝𝑟𝑖𝑜𝑟 ∼ 𝑁 (𝜫, τ𝚺)
———
3 Black and Litterman assume that the variance of the estimate Σπ

is proportional to the sample covariance matrix of the excess

returns Σ with a coefficient of proportionality τ i.e. Σπ = τΣ
4 0 < 𝜏 < 1

The confidence factor for market-implied returns is

therefore:

(τ𝚺)−1

Having obtained the prior, the equilibrium vector

of excess return, the investors’ K views on N assets

are now described by (1) a K × N matrix of bullish or

bearish (long or short) positions denoted by P5, where

K refers to the number of views and N to the number

of assets in the investment universe; and (2) a K-

element column vector of subjective expected returns

on these positions, Q. By way of example, we assume

3 views in an investment universe of 4 securities. The

first is of the relative outperformance of asset A versus

asset B ; the second and third is the belief that assets B

and C will return 3% on average. We hold no views on

Asset D. The position matrix, P, would be of the form:

𝑷 = (

𝑨 𝑩 𝑪 𝑫
𝑽𝒊𝒆𝒘 𝟏 1 −1 0 0
𝑽𝒊𝒆𝒘 𝟐 0 1 0 0
𝑽𝒊𝒆𝒘 𝟑 0 0 1 0

)

The first row incorporates the relative positions, the

second row and third rows, the absolute positions.

The Q vector of expected returns will be of the form:

𝑸 = (
𝑽𝒊𝒆𝒘 𝟏 10%
𝑽𝒊𝒆𝒘 𝟐 2%
𝑽𝒊𝒆𝒘 𝟑 1%

)

The general forms of the P matrix and Q vector are:

𝑷 = (

𝑝11 … 𝑝1𝑛

⋮ ⋱ ⋮
𝑝𝑘1 … 𝑝𝑘𝑛

)

𝑸 = (
𝑄1

⋮
𝑄𝑘

)

𝛀 models uncertainty in the views space. The

uncertainty of the views is represented by a random,

5 For relative views, the sum of the weights will equal 0 while

absolute views equal 1

 Risk Analysis and Performance Evaluation in Asset Management 7

independent, normally distributed error term vector

(ε). Views under uncertainty will thus have the form

of a 𝑸 vector and 𝜺 vector:

𝑄1

⋮
𝑄𝑘

 +

𝜀1

⋮
𝜀𝑘

The error term has mean of 0 and a covariance matrix

𝛀. The distribution of error terms is thus:

𝜀1

⋮
𝜀𝑘

 ~ 𝑁 [(
0
⋮
0

) , (𝛀 = (

𝜔1,1 0 0

0 ⋱ 0
0 0 𝜔𝑘,𝑘

))]

The structure of the view-uncertainty matrix 𝜴 is

inherited from the sample covariance matrix 𝜮 and the

P matrix which identifies the asset positioning on the

views vector 𝑸. 𝛀 is a diagonal covariance matrix

with off-diagonal positions set to zero under the

assumption that the views are independent of one

another. The variance of the views is formed in the

following manner:

𝜴 = 𝑑𝑖𝑎𝑔 𝑃(τ𝚺)𝑃𝑇

The diagonal matrix 𝛺 is therefore populated in the

following manner:

 𝛀 = (
𝑃1(τ𝚺)𝑃1

𝑇 0 0
0 ⋱ 0
0 0 𝑃𝑘(τ𝚺)𝑃𝑘

𝑇
)

The views distribution is:

 𝑟𝑣𝑖𝑒𝑤𝑠 ∼ 𝑁 (𝐐, 𝛀)

The confidence factor for subjective expected returns

is seen below, where the transpose of the P matrix

simply links the confidence Ω−1 to vector Q:

(P′𝛀−1)

We have now gathered the necessary inputs to

calculate the vector of posterior expected returns, 𝜇̂𝐵𝐿

also referred to as the Combined Return Vector:

𝜇̂𝐵𝐿 = [(τΣ)−1 + P′Ω−1P]−1 [(τΣ)−1Π + P′Ω−1Q]

Where:

- 𝜇̂𝐵𝐿 is the Combined Return Vector (N-element

vector where N refers to the assets in the

investable universe);

- τ is a scalar;

- Σ is the sample covariance matrix of excess

returns (N x N matrix).

- Π is the Implied Equilibrium Return Vector (N x

1 column vector).

- Q is the View Vector (K x 1 column vector, where

K refers to the subjective views on the N assets).

- P is a matrix that identifies the asset positions

related to the K views in the view vector (K x N

matrix).

- Ω is a diagonal covariance matrix of error terms

of the subjective views where the elements

represent the uncertainty in each view (K x K

matrix).

It should be apparent that 𝜇̂𝐵𝐿 is a confidence-

weighted average of the expected returns implied by

market equilibrium Π and the expected returns implied

by the investor’s views Q, where (τΣ)−1 and 𝑃𝛺−1

represent confidence in estimates of the market

equilibrium and views respectively. We multiply the

second term [(τΣ)−1Π + P′Ω−1Q] in the master

formula by the first term [(τΣ)−1 + P′Ω−1P]−1 to

ensure that the sum of all weights is equal to 1.

3.3. Achieving Robust Estimates of the Covariance

Matrix with the Ledoit-Wolf Shrinkage Method

The shrinkage technique for covariance matrix

estimation involves shrinking (1) an unbiased, high-

variance, unstructured estimate toward (2) a biased,

low-variance, structured estimate. In the context of

Ledoit-Wolf model, the objective is to obtain the

optimal weighted average of a sample covariance

matrix and a shrinkage target, based on a constant

correlation structure:

Σ̂𝐿𝑊 = 𝑤Σ̂𝐶𝐶 + (1 − 𝑤)Σ̂𝑆

The shrinkage intensity is determined by the

shrinkage constant, the weight 𝑤 applied to the

shrinkage target. The optimal shrinkage constant 𝒘∗is

 Risk Analysis and Performance Evaluation in Asset Management 8

derived by minimization of a quadratic loss function,

which in a matrix setting is the squared Frobenius

norm analogous with the squared error loss function.

We are thus seeking to minimize here the quadratic

measure of distance between the true (Σ) and inferred

(w Σ̂𝐶𝐶 + (1 − w) Σ̂𝑆) covariance matrices:

L(w) = ‖(w Σ̂𝐶𝐶 + (1 − w)Σ̂𝑆) − Σ‖
𝐹

2

Which gives rise to the expected loss function:

E(L(w) = ∑ ∑ 𝐸(𝑤 r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 + (1 − w)𝑠𝑖𝑗 − σ𝑖𝑗)
2

𝑁

𝑗=1

𝑁

𝑖=1

Where: r ̅ is the mean of sample correlations,

𝑠𝑖𝑖 𝑎𝑛𝑑 𝑠𝑗𝑗 are the sample variances and σ𝑖𝑗 is the true

covariance between elements i and j.

Noting that E(𝑥 2) = Var(𝑥) + [E(𝑥)] 2 ; for any random

variable x; we can rewrite

E(L(w) = ∑ ∑ 𝑉𝑎𝑟(𝑤 r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 + (1 − w)𝑠𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+ [𝐸 (𝑤 r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 + (1 − w)𝑠𝑖𝑗 − σ𝑖𝑗)]
2

Which simplifies to:

E(L(w) = ∑ ∑ 𝑤2 𝑉𝑎𝑟 (r ̅√𝑠𝑖𝑖𝑠𝑗𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+ (1 − w)2 𝑉𝑎𝑟 (𝑠𝑖𝑗)

+ 2𝑤(1 − 𝑤)𝐶𝑜𝑣(r ̅√𝑠𝑖𝑖𝑠𝑗𝑗, 𝑠𝑖𝑗)

+ 𝑤2 (𝜙𝑖𝑗 − σ𝑖𝑗)2

Where: 𝜙𝑖𝑗 is the constant covariance term for

elements ij formed by the average correlation in the

population 𝜚̅ and the square root of the population

variance terms √σ𝑖 𝑖σ𝑗𝑗 .

Taking the first derivative of the expected loss

function with respect to w gives:

d E(L(w)

d w
 = 2 ∑ ∑ 𝑤 𝑉𝑎𝑟 (r ̅√𝑠𝑖𝑖𝑠𝑗𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

− (1 − w) 𝑉𝑎𝑟 (𝑠𝑖𝑗)

+ (1 − 2𝑤)𝐶𝑜𝑣(r ̅√𝑠𝑖𝑖𝑠𝑗𝑗, 𝑠𝑖𝑗)

+ 𝑤 (𝜙𝑖𝑗 − σ𝑖𝑗)2

Setting the first derivative to zero and solving for w*,

yields:

𝑤∗ =
∑ ∑ 𝑉𝑎𝑟 (𝑠𝑖𝑗) 𝑁

𝑗=1
𝑁
𝑖=1 − 𝐶𝑜𝑣(r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 , 𝑠𝑖𝑗)

∑ ∑ 𝑉𝑎𝑟 (r ̅√𝑠𝑖𝑖𝑠𝑗𝑗 − 𝑠𝑖𝑗) + 𝑁
𝑗=1

𝑁
𝑖=1 (𝜙𝑖𝑗 − σ𝑖𝑗)2

Notice that the terms in the numerator represent the

sum of the variances of the entries of the sample

covariance matrix and sum of the covariances of the

entries of the constant correlation covariance matrix

with the entries of the sample covariance matrix.

Notice also that the denominator contains the

population terms 𝜙𝑖𝑗 and σ𝑖𝑗. Ledoit and Wolf show

that w* can be shown to be proportional to a constant

𝜅̂ divided by time T:

𝑤∗ =
𝜅̂

T

It follows from this relation that:

 𝜅 = 𝑇𝑤∗

 =
∑ ∑ 𝑉𝑎𝑟 (√𝑇 𝑠𝑖𝑗) 𝑁

𝑗=1
𝑁
𝑖=1 −𝐶𝑜𝑣 [(√𝑇 r̅ √𝑠𝑖𝑖𝑠𝑗𝑗), (√𝑇 𝑠𝑖𝑗)]

∑ ∑ 𝑉𝑎𝑟 (r̅ √𝑠𝑖𝑖𝑠𝑗𝑗− 𝑠𝑖𝑗)+ 𝑁
𝑗=1

𝑁
𝑖=1 (𝜙𝑖𝑗− σ𝑖𝑗)2

Taking the first term in the numerator, Ledoit and

Wolf contend that standard asymptotic theory, under

the assumptions of iid data and finite fourth moments

provides consistent estimators for π:

∑ ∑ 𝑉𝑎𝑟 (√𝑇 𝑠𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

→ ∑ ∑ Asy𝑉𝑎𝑟 (√𝑇 𝑠𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

→ 𝜋

 Risk Analysis and Performance Evaluation in Asset Management 9

Where 𝜋 represents the sum of asymptotic variances

of the entries of the sample covariance matrix scaled

by √𝑇.

Similarly:

∑ ∑ 𝐶𝑜𝑣 [(√𝑇 r̅ √𝑠𝑖𝑖𝑠𝑗𝑗), (√𝑇 𝑠𝑖𝑗)]

𝑁

𝑗=1

𝑁

𝑖=1

→ ∑ ∑ 𝐴𝑠𝑦𝐶𝑜𝑣 [(√𝑇 r̅ √𝑠𝑖𝑖𝑠𝑗𝑗), (√𝑇 𝑠𝑖𝑗)]

𝑁

𝑗=1

𝑁

𝑖=1

→ 𝜌

Where 𝜌 represents the sum of asymptotic covariances

of the entries of the shrinkage target with the entries of

the sample covariance matrix scaled by √𝑇.

The authors prove that a consistent estimator of π̂ij

will be found by first finding the product of the

deviations of the returns on securities i and j from their

average returns at each time t and then taking sum of

the squared differences of this product and the sample

variance over total time T:

π̂ij =
1

𝑇
 ∑{(y𝑖,𝑡 − y̅𝑖,)(y𝑗,𝑡 − y̅𝑗,) − 𝑠𝑖𝑗 }

2
𝑇

𝑡=1

Then the consistent estimator for 𝜋 is:

π̂ = ∑ ∑ π̂ij

𝑁

𝑗=1

𝑁

𝑖=1

A consistent estimator of 𝜌 is proven to be found by

splitting it into its diagonal and off-diagonal elements.

By definition:

∑ ∑ 𝐴𝑠𝑦𝐶𝑜𝑣 [(√𝑇 r̅ √𝑠𝑖𝑖𝑠𝑗𝑗), (√𝑇 𝑠𝑖𝑗)]

𝑁

𝑗=1

𝑁

𝑖=1

= ∑ 𝐴𝑠𝑦𝑉𝑎𝑟[√𝑇 𝑠𝑖𝑖]

𝑁

𝑖=1

+ ∑ ∑ 𝐴𝑠𝑦𝐶𝑜𝑣[(√𝑇 r̅ √𝑠𝑖𝑖𝑠𝑗𝑗), (√𝑇 𝑠𝑖𝑗)]

𝑁

𝑗=1
j≠i

𝑁

𝑖=1

Which implies on the diagonal for element i:

𝐴𝑠𝑦𝑉𝑎𝑟[√𝑇 𝑠𝑖𝑖] =
1

𝑇
 ∑{(y𝑖,𝑡 − y̅𝑖,) − 𝑠𝑖𝑖 }

2
𝑇

𝑡=1

 = π̂ij

And on the off-diagonal for elements i,j:

𝐴𝑠𝑦𝐶𝑜𝑣[(√𝑇 r̅ √𝑠𝑖𝑖𝑠𝑗𝑗), (√𝑇 𝑠𝑖𝑗)]

 =
r ̅

2
 √

𝑠𝑗𝑗

𝑠𝑠𝑖𝑖

 𝐴𝑠𝑦𝐶𝑜𝑣[√𝑇 𝑠𝑖𝑖 , √𝑇 𝑠𝑖𝑗]

 + √
𝑠𝑖𝑖

𝑠𝑠𝑗𝑗

 𝐴𝑠𝑦𝐶𝑜𝑣[√𝑇 𝑠𝑗𝑗 , √𝑇 𝑠𝑖𝑗]

 =
r ̅

2
 √

𝑠𝑗𝑗

𝑠𝑠𝑖𝑖

 𝜑̂𝑖𝑖,𝑖𝑗 + √
𝑠𝑖𝑖

𝑠𝑠𝑗𝑗

 𝜑̂𝑗𝑗,𝑖𝑗

Where 𝜑𝑖𝑖,𝑖𝑗 and 𝜑𝑗𝑗,𝑖𝑗 are:

𝜑𝑖𝑖,𝑖𝑗 =
1

𝑇
 ∑{(y𝑖,𝑡 − y̅𝑖,)

2 − 𝑠𝑖𝑖 }

𝑇

𝑡=1

{(y𝑖,𝑡 − y̅𝑖,)(y𝑗,𝑡 − y̅𝑗,) − 𝑠𝑖𝑗 }
2

𝜑𝑗𝑗,𝑖𝑗 =
1

𝑇
 ∑{(y𝑗,𝑡 − y̅𝑗,)

2 − 𝑠𝑗𝑗 }

𝑇

𝑡=1

{(y𝑖,𝑡 − y̅𝑖,)(y𝑗,𝑡 − y̅𝑗,) − 𝑠𝑖𝑗 }
2

Then the consistent estimator for 𝜌 is:

𝜌̂ = ∑ π̂ii

𝑁

𝑖=1

 + ∑ ∑
r ̅

2
 √

𝑠𝑗𝑗

𝑠𝑠𝑖𝑖
 𝜑̂𝑖𝑖,𝑖𝑗 + √

𝑠𝑖𝑖

𝑠𝑠𝑗𝑗
 𝜑̂𝑗𝑗,𝑖𝑗

𝑁

𝑗=1
j≠i

𝑁

𝑖=1

Finally, turning to the denominator terms:

∑ ∑ 𝑉𝑎𝑟 (r̅ √𝑠𝑖𝑖𝑠𝑗𝑗 − 𝑠𝑖𝑗) = 0
1

𝑇

𝑁

𝑗=1

𝑁

𝑖=1

And:

𝛾 = ∑ ∑

𝑁

𝑗=1

𝑁

𝑖=1

(𝜙𝑖𝑗 − σ𝑖𝑗)2

 Risk Analysis and Performance Evaluation in Asset Management 10

Where 𝛾 is the misspecification of the population

shrinkage target, for which the consistent estimator is

its sample counterpart :

𝛾 = ∑ ∑

𝑁

𝑗=1

𝑁

𝑖=1

(r̅ √𝑠𝑖𝑖𝑠𝑗𝑗 − 𝑠𝑖𝑗)
2

Collecting the three consistent estimator terms over T

gives the optimal shrinkage constant 𝑤∗:

𝑤∗ =
(π̂ − 𝜌̂) / 𝛾̂

𝑇
=

𝜅̂

T

4. Diversification by other means: The Risk

Parity Portfolio.

The objective of a Risk Parity Portfolio is that all

constituent assets contribute equally to portfolio risk.

More precisely the weighted marginal risk

contribution (variously referred to as component risk,

the dollar risk contribution or simply the risk

contribution) for every asset must be the same:

w𝑖
∂σ𝑃

∂w𝑖

= w𝑗
∂σ𝑃

∂w𝑗

Equivalently and somewhat more intuitively, the risk

contribution can be expressed as a function of

covariance with the portfolio:

RC𝑖 =
w𝑖

σ𝑃

 Cov [R𝑖 , R𝑃]

 =
w𝑖 (𝚺𝐰)𝑖

√𝐰′𝚺𝐰

The sum of these risk contributions must add up to

give total portfolio risk:

σ𝑃 = ∑ RC𝑖

𝑁

𝑖=1

Since the portfolio volatility is the sum of

contributions, the relative contribution of asset i to

portfolio volatility is defined as:

RRC𝑖 =
RC𝑖

σ𝑃

The sum of these relative risk contributions must

equal 1:

1 = ∑ 𝑅𝑅𝐶

𝑁

𝑖=1

No analytical expression is generally available for the

asset weights which equalize the risk contributions.

Numerical methods are employed such that asset

weights produce a portfolio where each holding has

the following relative contribution to portfolio risk:

𝑅𝑅𝐶𝑖 =
1

𝑁

5. Optimizing portfolios with Random Forest

Regression techniques

 Figure 3: Ex-post Efficient Frontier

We employ a Random Forest Regressor to predict

the optimal portfolio weights which will give the

maximum Sharpe Ratio. This weights variable is

known as the target. The historical sample data of

these optimal portfolios is obtained by calculating the

portfolio risk and return associated with 1 million

randomly generated weight vectors in each month of

the sample period and then identifying the one which

produces the highest Sharpe ratio. We are effectively

constructing the ex-post efficient frontier and finding

the ex-post optimal portfolio using the daily realized

volatility and return in each month. See Figure 3 above

which shows the ex-post efficient frontier, the set of

 Risk Analysis and Performance Evaluation in Asset Management 11

feasible portfolios and the realized risk and return of

the optimal portfolio.

The predictor (or “feature” variable) inputs to the

Random Forest regressor are the following high

frequency price-related technical indicators:

(i) Relative Strength Indicator.

𝑅𝑆𝐼 = 100 −
100

1 + 𝑅𝑆

𝑅𝑆 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛 𝑂𝑣𝑒𝑟 𝑝𝑎𝑠𝑡 14 𝑑𝑎𝑦𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠 𝑂𝑣𝑒𝑟 𝑝𝑎𝑠𝑡 14 𝑑𝑎𝑦𝑠

(ii) Percentage Price Oscillator

𝑃𝑃𝑂 =
12 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴 − 26 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴

26 𝑝𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴
 × 100

EMA = Exponential moving average

(iii) Exponentially Weighted Moving Average.

𝜎̂𝑡+1 = √ 𝜆𝜎𝑡
2 + (1 − 𝜆)𝜇𝑡

2

𝜆= Decay Factor for 14 days
𝜇2= Squared Daily Return
𝜎2= Daily Variance

(iv) Short-term percentage price volatility

𝜎̂𝑡+1 = √
1

𝑚
 ∑ 𝜇𝑡

2

𝑚

𝑖=1

𝑚= 14 (days)

(v) Rate of Change.

𝑅𝑂𝐶 =
(𝑃𝑡 − 𝑃𝑡−𝑛)

𝑃𝑡−𝑛

 × 100

𝑃𝑡= Closing Price
𝑃𝑡−𝑛= Closing Price 10 days ago

The algorithm for the Random Forest Regression is as

follows:

1) Draw a bootstrap sample B1 of size N from the

training data. The training data in our model is

70% of the total dataset.

2) Randomly select a subset m1 of T features where

m1<T. The features in our model are high

frequency technical indicators relating to

closing price data.

3) From this subset, select the most informative

feature to form the root node of the decision tree

by identifying the feature with the lowest sum of

squared error across the branches.

4) The sum of squared error is calculated as the

sum of squared differences between each

individual target value and the expected (mean)

target value at each branch for that category. The

target values in our model are the optimal

weights which resulted in the ex-post maximal

Sharpe ratio in the bootstrap sample. For

example, to calculate the SSE of an RSI input:

∑ (𝑦̅𝑅𝑆𝐼>𝑠 − 𝑦𝑛)2

𝑅𝑆𝐼>𝑠

+ ∑ (𝑦̅𝑅𝑆𝐼<𝑠 − 𝑦𝑛)2

𝑅𝑆𝐼<𝑠

5) Note that we just use the threshold method to

convert numerical feature data (the technical

indicator) into categories (values of the technical

indicator above/below threshold s). The

threshold level will impact the SSE. The general

expression for the objective function is therefore

the minimization of the sum of squared error via

the feature and threshold variables. 𝑥𝑚
(𝑛)

< 𝑠

refers to the numerical value of the mth attribute

of the nth data point:

min
𝑠

(∑ min
𝑦

(𝑦̅ − 𝑦𝑛)2

𝑥𝑚
(𝑛)

<𝑠

+ ∑ min
𝑦

(𝑦̅ − 𝑦𝑛)2

𝑥𝑚
(𝑛)

≥𝑠

)

6) Having obtained the best variable/split point

among the m1, the root node is split into two

daughter nodes.

 Risk Analysis and Performance Evaluation in Asset Management 12

7) Grow the Random Tree, RT1, by recursively

repeating steps 2-6 for the remaining elements

of m1 until the minimum node size is reached.

8) Populate the Random Forest with additional

trees RT(2…n) by repeating steps 1-7 n number of

times

The average at each leaf node of each tree will give

the expected target values determined by the (limited)

input variables used to build that tree. The average

values of all the leaf nodes in the forest will give the

expected target values for all the input variables used

to build that forest. This forest therefore will predict

the optimal (Sharpe Ratio-maximizing) asset weights

for the month, taking all the current technical indicator

levels as model input values.

Figure 3: Root and daughter nodes of constituent

decison tree in Random Forest

6. Investment Strategy Design

We limit the investment universe to the 30 largest

securities in the S&P 500 by market capitalization

with available price data over the sample period.

Portfolios are optimized and rebalanced at the

beginning of every month. We analyze the

performance of 9 strategies in total:

 Risk Analysis and Performance Evaluation in Asset Management 13

• We introduce two benchmark portfolios, the

equal-weighted (EW) and cap-weighted (CW)

indices.

• We construct two Global Minimum Variance

(GMV) portfolios formed by the optimal security

weights, for which the expected return

corresponds to the target minimum volatility on

the ex-ante efficient frontier, having been

supplied with some covariance matrix. This

obviates the need to forecast returns. In the first

case, which we call GMV-Sample, the covariance

matrix is formed by the sample volatilities and

correlations; in the second case, which we call

GMV-Shrink, we incorporate robust estimates of

the covariance matrix by employing the Ledoit-

Wolf procedure. In both cases, the sampling

period is 12 months.

• We further construct two Maximal Sharpe Ratio

(MSR) portfolios formed by the optimal security

weights which maximize expected return per unit

of volatility on the ex-ante efficient frontier,

having been supplied with a vector of mean

returns and some covariance matrix. In the first

case, which we call MSR-Sample, the covariance

matrix is formed by the sample volatilities and

correlations; in the second case, which we call

MSR-Shrink, we use the shrunk covariance

matrix. In both cases, the sampling period is again

12 months.

• The Black-Litterman portfolio is constructed by

drawing on the analyst consensus for each

security’s 12-month price target, obtained from

Marketbeat.com. To minimize the importance of

stale estimates and overweight more recent

estimates, we calculate the exponential weighted

moving average of analysts’ price objectives

using a lambda of 0.8. To ensure that only high

conviction bets are included, the P Matrix is

composed of 3 views. The first view over-weights

the security with the highest expected return and

under-weights the security with the lowest

expected return. The corresponding input for this

view in the Q vector will be the expected

difference in return between these two assets. The

second view over-weights the security with the

second highest expect return and underweights

the security with the second lowest return. Again,

the corresponding input for this view in the Q

vector will be the expected relative difference in

return. The same procedure is employed to form

the remaining view on the assets with the third

highest and third lowest returns. Views are

updated every six months and the portfolio is

rebalanced every month.

• The Risk Parity Portfolio is built using the sample

covariance matrix and is rebalanced and

reoptimized every month.

• Finally, the portfolio optimized with Random

Forest techniques builds the ex-post efficient

frontier and identifies the portfolio with the ex-

post maximal Sharpe ratio using the daily

volatilities, correlations and returns in each given

month. These weights of the portfolio with the

maximal Sharpe ratio in each month are the target

variables used to train the model. The feature

variables are the Technical indicator values at the

beginning of each month. The Random Forest

portfolio therefore is rebalanced and re-optimized

every month.

7. Performance Metrics

This study employs the following metrics:

(i) Sharpe Ratio.

The Sharpe Ratio measures the return

achieved per unit of volatility incurred:

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛

𝐴𝑛𝑛. 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣.

(ii) Sortino Ratio.

The Sortino Ratio measures the return

achieved per unit of downside volatility

incurred:

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛

𝐴𝑛𝑛. 𝑆𝑒𝑚𝑖 − 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑆𝑒𝑚𝑖 𝐷𝑒𝑣. = √
1

𝑛
 × ∑ (𝑀𝑒𝑎𝑛 − 𝑟𝑡)2

𝑛

𝑟𝑡<𝑀𝑒𝑎𝑛

 Risk Analysis and Performance Evaluation in Asset Management 14

(iii) Conditional Value at Risk.

Conditional Value at Risk, alternatively

known as Expected Shortfall or Expected

Tail Loss, refers to the mean loss of portfolio

value given that a loss is occurring at or

below a particular q-quantile (for example,

5% given a confidence level of 95%)

𝐶𝑉𝑎𝑅𝛼 = −
1

𝛼
∫ 𝑉𝑎𝑅𝛾(𝑋)𝑑𝑦

𝛼

0

Where 𝛼 is the threshold level of VaR and

𝑉𝑎𝑅𝛾 is the Value at Risk at the defined

confidence level.

(iv) Modified Value at Risk.

Modified VaR, alternatively known as

Cornish-Fisher VaR, permits the

computation of the Value-at-Risk for non-

normal with positive or negative skewness

and fat tails that is, positive excess kurtosis.

 Formally defined, if Gaussian VaR is:

 𝑉𝑎𝑅𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 𝜇 − 𝑧𝑔 𝜎

Where: 𝑧𝑔 is the z-score determined by the

determined confidence level.

Then:

𝑉𝑎𝑅𝐶𝑜𝑟𝑛𝑖𝑠ℎ 𝐹𝑖𝑠ℎ𝑒𝑟 = 𝜇 − 𝑧𝑐𝑓 𝜎

Where: 𝑧𝑐𝑓 is the adjusted z-score determined

by 𝑧𝑔 , and the observed skew (S) and

kurtosis (K) of the distribution of returns:

𝑧𝑐𝑓 = 𝑧𝑔 +
1

6
 (𝑧𝑔

2 − 1)𝑆

+
1

24
 (𝑧𝑔

3 − 3𝑧𝑔)𝐾

−
1

36
 (2𝑧𝑔

3 − 5𝑧𝑔)𝑆2

(v) Maximum Drawdown.

Maximum drawdown is defined as the peak-

to-trough decline of an investment during a

specific period. It is usually quoted as a

percentage of the peak value.

𝑀𝑎𝑥 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 =
𝑃 − 𝐿

𝑃

Where: 𝑃 is the peak value before the largest

drop in value and 𝐿 is the lowest value before

the new high is established.

8. Implementation in Python

The complete code to implement the risk analysis

and performance evaluation of the described strategies

is presented in order for the reader to verify the results,

expand or modify the study and provide granularity in

terms of strategy design and backtesting methodology.

8.1. Define Parameters for raw data import and

storage

1. # Import the python libraries
2. import pandas as pd

3. import numpy as np
4. from datetime import datetime

5. import matplotlib.pyplot as plt
6.

7. # Selection of Securities and Date
 Range

8. Securities = "MSFT AAPL AMZN GOOG
NVDA BRK-

A JNJ V PG JPM UNH MA INTC VZ HD T

 PFE MRK PEP WMT BAC XOM DIS KO CV

X CSCO CMCSA WFC BA ADBE"

9. Start = "2016-06-30"

10. End = "2020-06-30"
11. # Select File Type for upload of S

ecurity Data

12. filetype =".csv"

13. # Specify Local Storage Location

14. path = r"C:\Users\delga\Desktop\NY
U\CQF_Work\Portfolio_Management"

15. #Convert data parameters to string

 Risk Analysis and Performance Evaluation in Asset Management 15

16. Sec_Dates = Securities,Start, End

17. def convertTuple(tup):
18. str = '_'.join(tup)

19. return str
20. conv = convertTuple(Sec_Dates)

21. print(conv)
22. # Converted data parameters + File

type = Filename

23. filename = conv+filetype

24. print(filename)
25. # Join path, filename & filetype f

or single reference "File"

26. import os

27. File = os.path.join(path,filename)

28. print(File)

8.2. Import save and inspect raw data.

1. import yfinance a s yf

2. data = yf.download(Securities, sta
rt=Start, end=End)

3.
4. # Save Data

5. data.to_csv(File)
6.

7. # Inspect the first 5 lines of the
 saved CSV file

8. f =open(File,"r")
9. f.readlines()[:5]

8.3. Create dataframe to house daily prices. Clean

data structure

1. #The filename passed to the pd.rea

d_csv() function creates the daily

 price dataframe.

2. #Specified that the first two rows

 shall be handled as an headers.

3. #Specified that the first column s

hall be handled as an index.

4. #Specified that the index values a

re of type datetime

5. df_csv = pd.read_csv(File, header=

 [0,1], index_col=0, parse_dates=T

rue,)

6. df_csv.info()
7.

8.

9. # Define string and substring to c
ount securities in portfolio. Redu

ce Dataframe to daily adj close fo

r 30 securities

10. string = Securities
11. substring = " "

12. Sec_count = string.count(substring
)+1

13.
14. df_csv = df_csv.iloc[:,0:Sec_count

]

15. df_csv

16.
17. # Create single level header from

multilevel header

18. df_csv.columns = df_csv.columns.ma

p('|'.join).str.strip('|')

19. print(df_csv.columns)

20.
21. df_csv.columns = df_csv.columns.st

r.replace(r'Adj Close|$', '')

22.

23. df_csv.columns = df_csv.columns.st
r.lstrip('|') # strip suffix at t

he right end only.

24. df_csv.info()

25.
26. # Identify null values in dataset

27. df_csv.isnull().any()

28.
29. # Drop null values in dataset

30. df_csv = pd.DataFrame(df_csv.dropn
a().round(2))

31. df_csv.info()

8.4. Inspect asset prices and daily and monthly

returns,

1. # Plot Daily Price Evolution

2. df_csv.plot(figsize=(12, 60), subp
lots=True);

3.
4. # Calculate and plot daily returns

5. returns_daily = df_csv.pct_change(

)

6. returns_daily.plot(figsize=(12, 60

), subplots=True);

7.

8. # Calculate and plot monthly retur
ns (from first day of each mth)

 Risk Analysis and Performance Evaluation in Asset Management 16

9. """Date Offset
10. """

11. prices_BOM = df_csv.resample("BMS"
).first()

12. prices_BOM
13.

14. # Calculate monthly returns
15. ind_return = prices_BOM.pct_change

()

16. ind_return

17.
18. # Remove null values and format da

tetime index

19. ind_return = ind_return.dropna().r

ound(4)

20. ind_return

21.
22. ind_return.index = pd.to_datetime(

ind_return.index, format="%Y%m").t

o_period('M')

23. ind_return
24.

25. # plot monthly returns
26. ind_return.plot(figsize=(12, 60),

subplots=True);

8.5. Construct cap-weighted benchmark,

1. #Import

2. ind_mktcap = pd.read_excel("mktcap
_2008_2020.xlsx", sheet_name='Mkt_

Cap', index_col=0, parse_dates=Tru

e)

3. ind_mktcap
4.

5. #Slice by specified starting and e
nding dates

6. ind_mktcap =ind_mktcap.loc[Start:E
nd]

7. ind_mktcap
8.

9. #Date Format
10. ind_mktcap.index = pd.to_datetime(

ind_mktcap.index, format="%Y%m").t

o_period('M')

11. ind_mktcap
12.

13. # Compute and inspect price evolut
ion of benchmark

14.
15. total_mktcap = ind_mktcap.sum(axis

="columns")

16. total_mktcap.plot(figsize=(12,6));

17.
18. # Compute benchmark capweights

19. ind_capweight = ind_mktcap.divide(
total_mktcap, axis="rows")

20. ind_capweight = ind_capweight.iloc
[0:]

21. ind_capweight
22.

23. #Check that sum to one
24. ind_capweight.sum(axis="columns")

25.

26. # Compute monthly market return
27. total_market_return = (ind_capweig

ht * ind_return).sum(axis="columns

")

28. total_market_return
29.

30. total_market_return.plot();
31.

32. total_market_index = 1000*(1+total
_market_return).cumprod()

33. total_market_index.plot(title="Mar

ket Cap Weighted Index");

8.6. Construct equal-weighted benchmark

1. n_ew = ind_return.shape[1]
2. w_ew = np.repeat(1/n_ew, n_ew)

3. ind_equalweight = ind_capweight.mu
ltiply(1/ind_capweight/n_ew, axis=

"rows")

4. ind_equalweight

5.
6. # Calculate monthly return

7. total_eqweighted_return = (ind_equ
alweight * ind_return).sum(axis="c

olumns")

8. total_eqweighted_return.plot();

9.
10. # Calculate evolution of price of

equal-weighted index

11. total_eqweighted_index = 1000*(1+t

otal_eqweighted_return).cumprod()

12. total_eqweighted_index.plot(title=
"Equal Cap Weighted Index");

13.
14.

 Risk Analysis and Performance Evaluation in Asset Management 17

15. # Compare evolution of prices of c
ap-weighted and equal-

weighted index

16. total_market_index.plot(title="Mar

ket Cap Weighted Index", label="Mk

t-weighted", legend=True)

17. total_eqweighted_index.plot(title=
"Equal Cap Weighted Vs. Market Cap

 Weighted Indices", label="Eq-

weighted", legend=True);

8.7. Programs to compute expected return vector

and sample covariance matrix

1. def annualize_rets(r, periods_per_ye
ar):

2. """
3. Gives the annualized return. Tak

es a times series of returns and the

ir periodicity as arguments

4. """
5. compounded_growth = (1+r).prod()

6. n_periods = r.shape[0]

7. return compounded_growth**(perio
ds_per_year/n_periods)-1

8.
9. def annualize_vol(r, periods_per_yea

r):

10. """

11. Gives the annualized volatility.
 Takes a times series of returns and

 their periodicity as arguments.

12. """

13. return r.std()*(periods_per_year
**0.5)

14.
15. rf = 0.00

16. ann_factor = 12
17. er = annualize_rets(ind_return, ann_

factor)

18. ev = annualize_vol(ind_return, ann_f

actor)

19. corr = ind_return.corr()

20. cov = ind_return.cov()
21. covmat_ann = cov*(ann_factor)

8.8. Programs to compute risk adjusted

performance measures

1. def sharpe_ratio(r, riskfree_rate, p

eriods_per_year):

2. """

3. Computes the annualized sharpe r
atio of a set of returns

4. """
5. # convert the annual riskfree ra

te to per period

6. rf_per_period = (1+riskfree_rate

)**(1/periods_per_year)-1

7. excess_ret = r - rf_per_period

8. ann_ex_ret = annualize_rets(exce
ss_ret, periods_per_year)

9. ann_vol = annualize_vol(r, perio
ds_per_year)

10. return ann_ex_ret/ann_vol
11.

12. import scipy.stats
13. def is_normal(r, level=0.01):

14. """
15. Applies the Jarque-

Bera test to determine if a Series i

s normal or not

16. Test is applied at the 1% level
by default

17. Returns True if the hypothesis o
f normality is accepted, False other

wise

18. """

19. if isinstance(r, pd.DataFrame):

20. return r.aggregate(is_normal
)

21. else:
22. statistic, p_value = scipy.s

tats.jarque_bera(r)

23. return p_value > level

24.
25. def drawdown(return_series: pd.Serie

s):

26. """Takes a time series of asset

returns.

27. returns a DataFrame with colu

mns for

28. the wealth index,

29. the previous peaks, and
30. the percentage drawdown

31. """
32. wealth_index = 1000*(1+return_se

ries).cumprod()

 Risk Analysis and Performance Evaluation in Asset Management 18

33. previous_peaks = wealth_index.cu
mmax()

34. drawdowns = (wealth_index - prev
ious_peaks)/previous_peaks

35. return pd.DataFrame({"Wealth": w
ealth_index,

36. "Previous P
eak": previous_peaks,

37. "Drawdown":
 drawdowns})

38.
39. def semideviation(r):

40. """
41. Returns the semideviation aka ne

gative semideviation of r

42. r must be a Series or a DataFram

e, else raises a TypeError

43. """

44. if isinstance(r, pd.Series):
45. is_negative = r < 0

46. return r[is_negative].std(dd
of=0)

47. elif isinstance(r, pd.DataFrame)
:

48. return r.aggregate(semidevia
tion)

49. else:
50. raise TypeError("Expected r

to be a Series or DataFrame")

51.

52. def var_historic(r, level=5):
53. """

54. Returns the historic Value at Ri
sk at a specified level

55. i.e. returns the number such tha
t "level" percent of the returns

56. fall below that number, and the
(100-level) percent are above

57. """
58. if isinstance(r, pd.DataFrame):

59. return r.aggregate(var_histo

ric, level=level)

60. elif isinstance(r, pd.Series):

61. return -
np.percentile(r, level)

62. else:
63. raise TypeError("Expected r

to be a Series or DataFrame")

64.

65.
66. def cvar_historic(r, level=5):

67. """

68. Computes the Conditional VaR of
Series or DataFrame

69. """
70. if isinstance(r, pd.Series):

71. is_beyond = r <= -
var_historic(r, level=level)

72. return -
r[is_beyond].mean()

73. elif isinstance(r, pd.DataFrame)
:

74. return r.aggregate(cvar_hist
oric, level=level)

75. else:
76. raise TypeError("Expected r

to be a Series or DataFrame")

77.

78.
79. from scipy.stats import norm

80. def var_gaussian(r, level=5, modifie
d=False):

81. """
82. Returns the Parametric Gauusian

VaR of a Series or DataFrame

83. If "modified" is True, then the

modified VaR is returned,

84. using the Cornish-

Fisher modification

85. """

86. # compute the Z score assuming i
t was Gaussian

87. z = norm.ppf(level/100)
88. if modified:

89. # modify the Z score based o
n observed skewness and kurtosis

90. s = skewness(r)
91. k = kurtosis(r)

92. z = (z +
93. (z**2 - 1)*s/6 +

94. (z**3 -3*z)*(k-
3)/24 -

95. (2*z**3 - 5*z)*(s**2
)/36

96.)
97. return -

(r.mean() + z*r.std(ddof=0))

98.

99. def skewness(r):
100. """

101. Alternative to scipy.stats.sk

ew()

102. Computes the skewness of the

supplied Series or DataFrame

103. Returns a float or a Series

104. """

 Risk Analysis and Performance Evaluation in Asset Management 19

105. demeaned_r = r - r.mean()

106. # use the population standard

 deviation, so set dof=0

107. sigma_r = r.std(ddof=0)

108. exp = (demeaned_r**3).mean()

109. return exp/sigma_r**3

110.

111.

112. def kurtosis(r):

113. """

114. Alternative to scipy.stats.ku

rtosis()

115. Computes the kurtosis of the

supplied Series or DataFrame

116. Returns a float or a Series

117. """

118. demeaned_r = r - r.mean()

119. # use the population standard

 deviation, so set dof=0

120. sigma_r = r.std(ddof=0)

121. exp = (demeaned_r**4).mean()

122. return exp/sigma_r**4

123.

124. from scipy import stats

125. for column in ind_return:

126. stats.probplot(ind_return[col

umn], dist="norm", plot=plt)

127. plt.show()

8.9. Construct efficient frontier based on classical

Markowitz model

1. # Define functions for portfolio ret
urn and volatility

2.
3. def portfolio_return(weights, return

s):

4. """

5. Computes the return on a portfol
io from constituent returns and weig

hts

6. """

7. return weights.T @ returns
8.

9.
10. def portfolio_vol(weights, covmat):

11. """

12. Computes the vol of a portfolio
from a covariance matrix and constit

uent weights

13. """

14. vol = (weights.T @ covmat @ weig
hts)**0.5

15. return vol
16.

17. # Program to return optimal weights
for maximization of Sharpe ratio

18.
19. from scipy.optimize import minimize

20.

21. def msr(riskfree_rate, er, cov):
22. """

23. Returns the weights of the portf
olio that gives you the maximum shar

pe ratio

24. given the riskfree rate, an expe

cted returns vector and a covariance

 matrix

25. """
26. n = er.shape[0] # Input for init

ial guess

27. init_guess = np.repeat(1/n, n) #

 Equal Weighting for init_guess

28. bounds = ((0.0, 1.0),) * n # Min

imum and maximum individual allocati

on (No shorting constraint)

29. # Define the constraint: Sum of
portfolio weights variable minus one

 must equal zero. ("Equality" Constr

aint)

30. weights_sum_to_1 = {'type': 'eq'
,

31. 'fun': lambd
a weights: np.sum(weights) - 1

32. }
33. def neg_sharpe(weights, riskfree

_rate, er, cov):

34. """

35. Defining the objective funct
ion which we seek to minimize:

36. The investor seeks weights t
o maximise Sharpe ratio (Excess Ret/

Vol), for given return vector, cov m

atrix and rfr.

37. Equivalent to minimizing the
 negative of this ratio.

38. """
39. r = portfolio_return(weights

, er)

 Risk Analysis and Performance Evaluation in Asset Management 20

40. vol = portfolio_vol(weights,
 cov)

41. return -
(r - riskfree_rate)/vol

42.
43. # Scipy optimize function takes

obj fun; init guess, input args for

obj fun, constraints on total weight

s, boundaries

44. # for individual weights, the op

timization method

45. weights = minimize(neg_sharpe, i

nit_guess,

46. args=(riskfre

e_rate, er, cov), method='SLSQP',

47. options={'dis

p': False},

48. constraints=(

weights_sum_to_1,),

49. bounds=bounds

)

50. return weights.x

51.
52. # Program to return optimal weights

to minimize vol for a given target r

eturn

53.
54. def minimize_vol(target_return, er,

cov):

55. """

56. Returns the optimal weights that
 achieve the target return

57. given a set of expected returns
and a covariance matrix

58. """
59. n = er.shape[0]

60. init_guess = np.repeat(1/n, n)
61. bounds = ((0.0, 1.0),) * n # an

N-tuple of 2-tuples!

62. # construct the constraints

63. weights_sum_to_1 = {'type': 'eq'
,

64. 'fun': lambd
a weights: np.sum(weights) - 1

65. }
66. return_is_target = {'type': 'eq'

,

67. 'args': (er,

),

68. 'fun': lambd

a weights, er: target_return - portf

olio_return(weights,er)

69. }

70. weights = minimize(portfolio_vol
, init_guess,

71. args=(cov,),
method='SLSQP',

72. options={'dis
p': False},

73. constraints=(
weights_sum_to_1,return_is_target),

74. bounds=bounds

)

75. return weights.x

76.
77. # Weighting scheme returning optimal

 weights for minimization of global

min. variance

78.
79. def gmv(cov):

80. """
81. Returns the weights of the Globa

l Minimum Volatility portfolio

82. given a covariance matrix

83. """
84. n = cov.shape[0]

85. return msr(0, np.repeat(1, n), c
ov) #Exp. ret set to 1 for all secur

ities

86.

87. # Weighting scheme returning equal
weighted portfolio.

88. def weight_ew(r):
89. """

90. Returns the weights of the EW po
rtfolio based on the asset returns "

r" as a DataFrame

91. """

92. n = len(r.columns)
93. ew = pd.Series(1/n, index=r.colu

mns)

94. return ew

95.
96. def optimal_weights(n_points, er, co

v):

97. """

98. Returns a list of weights that r
epresent a grid of n_points on the e

fficient frontier given a range of

99. target returns (from the lowest

expected return to the highest expec

ted return)

100. """

101. target_rs = np.linspace(er.mi

n(), er.max(), n_points)

 Risk Analysis and Performance Evaluation in Asset Management 21

102. weights = [minimize_vol(targe

t_return, er, cov) for target_return

 in target_rs]

103. return weights

104.

105. def plot_ef(n_points, er, cov, st

yle='.-

', legend=False, show_cml=False, ris

kfree_rate=0, show_ew=False, show_gm

v=False):

106. """

107. Plots the multi-

asset efficient frontier using the "

optimal weights" function

108. """

109. weights = optimal_weights(n_p

oints, er, cov)

110. rets = [portfolio_return(w, e

r) for w in weights]

111. vols = [portfolio_vol(w, cov)

 for w in weights]

112. ef = pd.DataFrame({

113. "Returns": rets,

114. "Volatility": vols

115. })

116. ax = ef.plot.line(x="Volatili

ty", y="Returns", style=style, legen

d=legend)

117. ax.set_title('Figure 1: Ex-

Ante Efficient Frontier (June 2020)'

)

118. plt.xlabel('Volatility')

119. plt.ylabel('Returns')

120. if show_cml:

121. ax.set_xlim(left = 0)

122. # get MSR

123. w_msr = msr(riskfree_rate

, er, cov)

124. r_msr = portfolio_return(

w_msr, er)

125. vol_msr = portfolio_vol(w

_msr, cov)

126. # add CML

127. cml_x = [vol_msr]

128. cml_y = [r_msr]

129. ax.plot(cml_x, cml_y, col

or='red', marker="*", linestyle='das

hed', linewidth=2, markersize=18, la

bel='msr')

130. plt.annotate("MSR", xy=(v

ol_msr, r_msr), ha='right', va='bott

om', rotation=45)

131. if show_ew:

132. n = er.shape[0]

133. w_ew = np.repeat(1/n, n)

134. r_ew = portfolio_return(w

_ew, er)

135. vol_ew = portfolio_vol(w_

ew, cov)

136. # add EW

137. ax.plot([vol_ew], [r_ew],

 color='green', marker='o', markersi

ze=10, label='ew')

138. plt.annotate("EW", xy=(vo

l_ew, r_ew), horizontalalignment='ri

ght', verticalalignment='bottom', ro

tation=45)

139. if show_gmv:

140. w_gmv = gmv(cov)

141. r_gmv = portfolio_return(

w_gmv, er)

142. vol_gmv = portfolio_vol(w

_gmv, cov)

143. # add GMV

144. ax.plot([vol_gmv], [r_gmv

], color='goldenrod', marker="D", ma

rkersize=12, label='gmv')

145. plt.annotate("GMV", xy=(v

ol_gmv, r_gmv), horizontalalignment=

'right', verticalalignment='bottom',

 rotation=45)

146. return ax

147.

148. # Display eff. frontier

149. plot_ef(100, er, covmat_ann, styl

e='.-

', legend=False, show_cml=True, risk

free_rate=rf, show_ew=True, show_gmv

=True);

8.10. Shrink Covariance Matrix

1. def sample_cov(r, **kwargs):

2. """
3. Returns the sample covariance of

 the supplied returns

4. """

5. return r.cov()
6.

7. def cc_cov(r, **kwargs):
8. """

9. Estimates a covariance matrix by
 using the Elton/Gruber Constant Cor

relation model

10. """

 Risk Analysis and Performance Evaluation in Asset Management 22

11. rhos = r.corr()
12. n = rhos.shape[0]

13. # this is a symmetric matrix wit
h diagonals all 1

14. rho_bar = (rhos.values.sum()-
n)/(n*(n-1))

15. ccor = np.full_like(rhos, rho_ba
r)

16. np.fill_diagonal(ccor, 1.)
17. sd = r.std()

18. return pd.DataFrame(ccor * np.ou
ter(sd, sd), index=r.columns, column

s=r.columns)

19.

20. def shrinkage_cov(r, delta=0.5, **kw
args):

21. """
22. Covariance estimator that shrink

s between the Sample Covariance and

the Constant Correlation Estimators

23. """
24. prior = cc_cov(r, **kwargs)

25. sample = sample_cov(r, **kwargs)

26. return delta*prior + (1-
delta)*sample

27.
28. # Reconstruct eff. frontier with shr

unken covar. matrix

29. plot_ef(100, er, shrink_cov_ann, sty

le='.-

', legend=False, show_cml=True, risk

free_rate=rf, show_ew=True, show_gmv=Tr
ue);

8.11. Design Risk Parity Portfolio

1. def risk_contribution(w,cov):
2. """

3. Compute the relative contributio
ns to risk of the constituents of a

portfolio, given a set of portfolio

weights

4. and a covariance matrix
5. """

6. total_portfolio_var = portfolio_
vol(w,cov)**2

7. # Marginal contribution of each
constituent to portfolio variance

8. marginal_contrib = cov@w
9.

10. # Relative contribution of each
constituent to portfolio variance (r

isk)

11. risk_contrib = np.multiply(margi

nal_contrib,w.T)/total_portfolio_var

12. return risk_contrib
13.

14. from scipy.optimize import minimize

15.
16. def target_risk_contributions(target

_risk, cov):

17. """

18. Returns a portfolio with constit
uent security weights such

19. that their risk contributions to
 the portfolio are as close as possi

ble to

20. the target_risk contributions fo

r a given the covariance matrix.

21. """

22. n = cov.shape[0]
23. init_guess = np.repeat(1/n, n)

24. bounds = ((0.0, 1.0),) * n # an
N-tuple of 2-tuples

25. # construct the constraints
26. weights_sum_to_1 = {'type': 'eq'

,

27. 'fun': lambd

a weights: np.sum(weights) - 1

28. }

29. def msd_risk(weights, target_ris
k, cov):

30. """
31. The objective function: Mini

mise the Sum of Squared Differences

in the risk contributions to the por

tfolio

32. and the target_risk contribu

tions via the asset weights decision

 variable

33. """
34. w_contribs = risk_contributi

on(weights, cov)

35. return ((w_contribs-

target_risk)**2).sum()

36.

37. weights = minimize(msd_risk, ini
t_guess,

38. args=(target_
risk, cov), method='SLSQP',

39. options={'dis
p': False},

 Risk Analysis and Performance Evaluation in Asset Management 23

40. constraints=(
weights_sum_to_1,),

41. bounds=bounds
)

42. return weights.x
43.

44. def equal_risk_contributions(cov):
45. """

46. Returns the weights of the portf
olio that equalizes the risk contrib

utions

47. of the constituents based on the

 given covariance matrix

48. """

49. n = cov.shape[0]
50. return target_risk_contributions

(target_risk=np.repeat(1/n,n), cov=c

ov)

51.
52. def weight_erc(r, cov_estimator=samp

le_cov, **kwargs):

53. """

54. Produces the weights of the ERC
portfolio given a returns series and

 covariance matrix strucrure.

55. """

56. est_cov = cov_estimator(r, **kwa
rgs)

57. return equal_risk_contributions(
est_cov)

58.
59. def target_risk_contributions(target

_risk, cov):

60. """

61. Returns a portfolio with constit
uent security weights such

62. that their risk contributions to
 the portfolio are as close as possi

ble to

63. the target_risk contributions fo

r a given the covariance matrix.

64. """

65. n = cov.shape[0]
66. init_guess = np.repeat(1/n, n)

67. bounds = ((0.0, 1.0),) * n # an
N-tuple of 2-tuples

68. # construct the constraints
69. weights_sum_to_1 = {'type': 'eq'

,

70. 'fun': lambd

a weights: np.sum(weights) - 1

71. }

72. def msd_risk(weights, target_ris
k, cov):

73. """
74. The objective function: Mini

mise the Sum of Squared Differences

in the risk contributions to the por

tfolio

75. and the target_risk contribu

tions via the asset weights decision

 variable

76. """
77. w_contribs = risk_contributi

on(weights, cov)

78. return ((w_contribs-

target_risk)**2).sum()

79.

80. weights = minimize(msd_risk, ini
t_guess,

81. args=(target_
risk, cov), method='SLSQP',

82. options={'dis
p': False},

83. constraints=(
weights_sum_to_1,),

84. bounds=bounds
)

85. return weights.x
86.

87. def equal_risk_contributions(cov):
88. """

89. Returns the weights of the portf
olio that equalizes the risk contrib

utions

90. of the constituents based on the

 given covariance matrix

91. """

92. n = cov.shape[0]
93. return target_risk_contributions

(target_risk=np.repeat(1/n,n), cov=c

ov)

94.
95. def weight_erc(r, cov_estimator=samp

le_cov, **kwargs):

96. """

97. Produces the weights of the ERC
portfolio given a returns series and

 covariance matrix strucrure.

98. """

99. est_cov = cov_estimator(r, **kwa
rgs)

100. return equal_risk_contributio

ns(est_cov)

101.

102. # RRC of ERC portfolio

103. RRC_erc = risk_contribution(equal

_risk_contributions(cov), cov)

 Risk Analysis and Performance Evaluation in Asset Management 24

104. RRC_erc.plot.bar(title="Relative

(%) Risk Contributions of an ERC por

tfolio");

105.

106. # Portfolio composition of ERC st

rategy. (Numpy array)

107. weight_erc(ind_return, cov_estima

tor=sample_cov)

108.

109. # Portfolio composition of ERC st

rategy. (DataFrame)

110. numpy_weight_erc = weight_erc(ind

_return, cov_estimator=sample_cov)

111. df_weight_erc = pd.DataFrame(data

=numpy_weight_erc, index=ind_return.

columns, columns=["ERC Asset Alloca

tion"])

112. df_weight_erc

113.

114. # Portfolio vol of ERC strategy

115. Port_vol_erc = portfolio_vol(weig

ht_erc(ind_return), cov)

116. Port_vol_erc

117.

118. # Risk Contribution ERC strategy

119. RC_erc = RRC_erc * Port_vol_erc

120. RC_erc.plot.bar(title="($) Risk C

ontributions of an ERC portfolio");

8.12. Design Black-Litterman Optimized Portfolio

1. # Lookback period

2.
3. BL_per_beg_1 = Start

4. BL_per_end_1 = End
5.

6.
7. # Market inputs: rfr. exp returns ve

ctor, sample covariance matrix

8. rf_1 = 0.00

9. ann_factor_1 = 12
10. er_1 = annualize_rets(ind_return[BL_

per_beg_1:BL_per_end_1] , ann_factor

)

11. ev_1 = annualize_vol(ind_return[BL_p
er_beg_1:BL_per_end_1], ann_factor)

12. corr_1 = ind_return[BL_per_beg_1:BL_

per_end_1].corr()

13. cov_1 = ind_return[BL_per_beg_1:BL_p

er_end_1].cov()

14.
15. # Data for Views Vector, q

16.
17. View_1 = 0.20

18. View_2 = 0.10
19. View_3 = 0.05

20.
21. # Data for Pick Matrix, p

22.
23. Long_1 = 'T'

24. Short_1 = 'JPM'
25. Long_2 = 'V'

26. Short_2 = 'GOOG'
27. Long_3 = 'UNH'

28. Short_3 = 'MA'
29.

30. # Specify investable universe.
31. assets = list(ind_return.columns)

32. assets
33.

34. # Calculate correlation matrix and c
onvert to Dataframe

35. rho = corr_1
36. rho

37.
38. # Calculate expected volatilities of

 securities

39. vols = pd.DataFrame(ev_1, columns=["

Vols"])

40. vols

41.
42. # Market weights (optimal assumimg m

arket equilibrium)

43. w_eq = ind_capweight.loc[BL_per_end_

1]

44. w_eq

45.
46. # Define prior covariance matrix (sa

mple annualised covar matrix here)

47. sigma_prior = vols.dot(vols.T) * rho

48. sigma_prior

49.
50. # Compute Equilibrium-

implied returns vector and convert t

o series

51.
52. def implied_returns(delta, sigma, w)

:

53. """

54. Obtain the implied expected returns
by reverse engineering the weights

55. Inputs:
56.

 Risk Analysis and Performance Evaluation in Asset Management 25

57. delta: Risk Aversion Coefficient (sc
alar)

58. sigma: Variance-
Covariance Matrix (N x N) as DataFra

me

59. w: Market weights (N x 1) as Ser

ies

60. Returns an N x 1 vector of Returns a

s Series

61. """

62. ir = delta * sigma.dot(w).squeez
e() # to get a series from a 1-

column dataframe

63. ir.name = 'Implied Returns'

64. return ir
65.

66. # Compute Pi and compare:
67. pi = implied_returns(delta=2.5, sigm

a=sigma_prior, w=w_eq)

68.

69. # Populate views vector , Q: (X will
 outperform Y by Z%)

70. q = pd.Series([View_1]) # First view

71. # start with a single view and an em
pty Pick Matrix, to be overwritten w

ith the specific pick(s) + view(s)

72. p = pd.DataFrame([0.]*len(assets), i

ndex=assets).T

73.

74. # Pick 1
75. p.iloc[0][Long_1] = +1.

76. p.iloc[0][Short_1] = -1
77. (p*100).round(1)

78.
79. # Add second view

80. view2 = pd.Series([View_2], index=[1
])

81. q = q.append(view2)
82. pick2 = pd.DataFrame([0.]*len(assets

), index=assets, columns=[1]).T

83. p = p.append(pick2)

84. p.iloc[1][Long_2]=+1
85. p.iloc[1][Short_2]=-1

86. np.round(p.T, 3)*100
87.

88. # Add third view
89. view3 = pd.Series([View_3], index=[2

])

90. q = q.append(view3)

91. pick3 = pd.DataFrame([0.]*len(assets
), index=assets, columns=[2]).T

92. p = p.append(pick3)
93. p.iloc[2][Long_3]=+1

94. p.iloc[2][Short_3]=-1
95. np.round(p.T, 3)*100

96.
97. # Calculate Omega as proportional to

 the variance of the prior

98. def proportional_prior(sigma, tau, p

):

99. """

100. Returns the He-

Litterman simplified Omega

101. Inputs:

102. sigma: N x N Covariance Matri

x as DataFrame

103. tau: a scalar

104. p: a K x N DataFrame linking

Q and Assets

105. returns a P x P DataFrame, a

Matrix representing Prior Uncertaint

ies

106. """

107. helit_omega = p.dot(tau * sig

ma).dot(p.T)

108. # Make a diag matrix from the

 diag elements of Omega

109. return pd.DataFrame(np.diag(n

p.diag(helit_omega.values)),index=p.

index, columns=p.index)

110.

111. # Program to compute the posterio

r expected returns based on the orig

inal black litterman reference model

112.

113. from numpy.linalg import inv

114.

115. def bl(w_prior, sigma_prior, p, q

,

116. omega=None,

117. delta=2.5, tau=.0

2):

118. """

119. # Computes the posterior expected

 returns based on the original black

 litterman reference model

120. # W.prior must be an N x 1 vector

 of weights, a Series

121. # Sigma.prior is an N x N covaria

nce matrix, a DataFrame

122. # P must be a K x N matrix linkin

g Q and the Assets, a DataFrame

123. # Q must be an K x 1 vector of vi

ews, a Series

124. # Omega must be a K x K matrix a

DataFrame, or None

 Risk Analysis and Performance Evaluation in Asset Management 26

125. # if Omega is None, we assume it

is proportional to variance of the p

rior

126. # delta and tau are scalars

127. """

128. if omega is None:

129. omega = proportional_prio

r(sigma_prior, tau, p)

130. # Force w.prior and Q to be c

olumn vectors

131. # How many assets?

132. N = w_prior.shape[0]

133. # How many views?

134. K = q.shape[0]

135. # First, reverse-

engineer the weights to get pi

136. pi = implied_returns(delta, s

igma_prior, w_prior)

137. # Adjust (scale) Sigma by the

 uncertainty scaling factor

138. sigma_prior_scaled = tau * si

gma_prior

139. # posterior estimate of the m

ean, use the "Master Formula"

140. # we use the versions that do

 not require

141. # Omega to be inverted (see p

revious section)

142. # this is easier to read if w

e use '@' for matrixmult instead of

.dot()

143. # mu_bl = pi + sigma_prio

r_scaled @ p.T @ inv(p @ sigma_prior

_scaled @ p.T + omega) @ (q - p @ pi

)

144. mu_bl = pi + sigma_prior_scal

ed.dot(p.T).dot(inv(p.dot(sigma_prio

r_scaled).dot(p.T) + omega).dot(q -

p.dot(pi).values))

145. # posterior estimate of uncer

tainty of mu.bl

146. #sigma_bl = sigma_prior + sig

ma_prior_scaled - sigma_prior_scaled

 @ p.T @ inv(p @ sigma_prior_scaled

@ p.T + omega) @ p @ sigma_prior_sca

led

147. sigma_bl = sigma_prior + sigm

a_prior_scaled - sigma_prior_scaled.

dot(p.T).dot(inv(p.dot(sigma_prior_s

caled).dot(p.T) + omega)).dot(p).dot

(sigma_prior_scaled)

148. return (mu_bl, sigma_bl)

149.

150. # Specify scalars

151.

152. delta = 2.5

153. tau = 0.05

154.

155. # Derive the Black Litterman Expe

cted Returns

156. bl_mu, bl_sigma = bl(w_eq, sigma_

prior, p, q, omega=None, delta=delta

, tau= tau)

157. (bl_mu*100).round(2)

158.

159. (bl_sigma*100).round(2)

160.

161. # for convenience and readability

, define the inverse of a dataframe

162. def inverse(d):

163. """

164. Invert the dataframe by inver

ting the underlying matrix

165. """

166. return pd.DataFrame(inv(d.val

ues), index=d.columns, columns=d.ind

ex)

167.

168. def w_msr(sigma, mu, scale=True):

169. """

170. Optimal (Tangent/Max Sharpe R

atio) Portfolio weights

171. by using the Markowitz Optimi

zation Procedure

172. Mu is the vector of Excess ex

pected Returns

173. Sigma must be an N x N matrix

 as a DataFrame and Mu a column vect

or as a Series

174. """

175. w = inverse(sigma).dot(mu)

176. if scale:

177. w = w/sum(w) # fix: this

assumes all w is +ve

178. return w

179.

180. # Optimal BL portfolio weights

181. bl_port = w_msr(bl_sigma,bl_mu)

182. bl_port.plot(kind='bar')

183.

184. # Name BL optimal portfolio

185. alt_wstar = (w_msr(sigma=bl_sigma

, mu=bl_mu,scale=True)*100).round(4)

186. alt_wstar

187.

 Risk Analysis and Performance Evaluation in Asset Management 27

188. # Transpose & Export for Backtest

ing purposes

189. df_alt_wstar = pd.DataFrame(alt_w

star, columns=[ind_return.index[-

1]]).T

190. #df_alt_wstar.to_excel("BL_WEIGHT

S4.5.xlsx", sheet_name=End)

191. df_alt_wstar

192.

193. # Test: Market inputs should give

 market weights as output

194. w_eq_check = w_msr(delta*sigma_p

rior, pi, scale=False)

195. w_eq_check

196.

197. # BL-

implied Alpha : BL Exp Returns - Equ

ilibrium Impl. Returns

198.

199. Exp_Active_ret = (((bl_mu) - (pi)

)*(100)).round(2)

200. Exp_Active_ret.plot(kind='bar', t

itle = "BL-

implied Active Return");

201.

202. # Display the difference in Poste

rior and Prior weights

203. Active_weight = np.round(wstar -

w_eq/(1+tau), 3)*100

204.

205. Active_weight.plot(kind='bar', ti

tle = "BL-implied Active Weight");

8.13. Optimization with Random Forest

1. # Use Cleaned Closing Price Data

2. full_df = df_csv
3. full_df

4.
5. # Resample the full DataFrame to mon

thly timeframe

6. monthly_df = full_df.resample('BMS')

.first()

7. # Calculate daily returns of stocks

8. returns_daily = full_df.pct_change()

9. # Calculate monthly returns of the s

tocks

10. returns_monthly = monthly_df.pct_cha

nge().dropna()

11. # Suffix to column name

12. returns_monthly.columns += '_RET'
13.

14. print(returns_monthly.tail())
15.

16. # Compute Daily covariance of stocks
 for each historical monthly period

17.

18. # Create Empty dictionary for each m
onth's daily covariances

19. covariances = {}
20.

21. # Extract all dates relating to each
 trading day in the daily return tim

es series

22. rtd_idx = returns_daily.index

23.
24.

25. for i in returns_monthly.index:
26. # Mask daily returns for each mo

nth and year. Masks are an array of

boolean values for which a condition

27. is met.

28. # In this instance, for each mon
th-

year of the monthly returns index, t

he mask identifies as "True" where

29. # the index of daily returns has

 a matching month-year timestamp.

30. # The resulting boolean arrays i

s used to isolate data in the origin

al data array ie daily returns in

31. each looped month
32.

33. mask = (rtd_idx.month == i.month
) & (rtd_idx.year == i.year)

34.
35. # The covariance calculation is perf

ormed on daily data in each monthly

period

36. covariances[i] = returns_daily[m
ask].cov()

37.
38. covariances

39.
40. # Obtain 1,000,000 potential portfol

io performances for each month via r

andom iterations of the weights vect

or.

41.

42. portfolio_returns, portfolio_volatil
ity, portfolio_weights = {}, {}, {}

 Risk Analysis and Performance Evaluation in Asset Management 28

43.
44. # For each key value (BOM date) in t

he covariances dictionary, return th

e covariance in that calendar month.

45. for date in sorted(covariances.keys(

)):

46. cov = covariances[date]

47. # Randomly iterate 1,000,000 tim
es the weights vector for the 30 ass

ets

48. for portfolio in range(1000000):

49. weights = np.random.random(c

ov.shape[0])

50. weights /= np.sum(weights) #

 /= divides weights by their sum to

normalize

51. returns = np.dot(weights, re
turns_monthly.loc[date])

52. volatility = np.sqrt(np.dot(
weights.T, np.dot(cov, weights)))

53. # The setdefault() method re
turns the value of the appended item

 with the specified key. (Like

54. Vlookup)

55. portfolio_returns.setdefault
(date, []).append(returns)

56. portfolio_volatility.setdefa
ult(date, []).append(volatility)

57. portfolio_weights.setdefault
(date, []).append(weights)

58.
59. print(portfolio_weights[date][0])

60.
61. import matplotlib.pyplot as plt

62.
63. # Plot efficient frontier for latest

 month of available data

64. date = sorted(covariances.keys())[-

1]

65. latest_returns = portfolio_returns[d

ate]

66. latest_vol = portfolio_volatility[da

te]

67. # define your figure then plot infor

mation in that space

68. plt.figure(figsize=(14,8))

69. plt.scatter(x=latest_vol, y= latest_
returns, alpha=0.5, cmap='RdYlBu')

70. plt.axis([0.014, 0.030, 0.028, 0.10]
)

71.
72.

73. # Identify point on eff frontiier wi
th maximal sharpe ratio in that mont

h

74. max_sharpe_coord = max_sharpe_idxs[d

ate]

75.

76. # Place an red star on the point wit
h the best Sharpe ratio

77. plt.scatter(x=latest_vol[max_sharpe_
coord], y=latest_returns[max_sharpe_

coord], marker=(5,1,0),color='r',s=1

000)

78.
79. # Label axes

80. plt.xlabel('Volatility')
81. plt.ylabel('Returns')

82.
83. # Display

84.
85. plt.show()

86.
87. # Library to import technical indica

tors

88. import talib

89.
90. # 1. Calculate exponentially-

weighted moving average of daily ret

urns

91. ewma_daily = returns_daily.ewm(span=
14).mean()

92.
93. # Resample daily returns to first bu

siness day of the month with the fir

st day for that month

94. ewma_monthly = ewma_daily.resample('
BMS').first()

95.
96. # Shift ewma for the month by 1 mont

h forward so we can use it as a feat

ure for future predictions

97. ewma_monthly = ewma_monthly.shift(1)
.dropna()

98.
99. # Rename Columns

100. ewma_monthly.columns += '_EWMA'

101.

102. ewma_monthly

103.

104. # 2. Calculate standard deviation

 of daily returns

105. sd_daily = returns_daily.apply(la

mbda colseries: talib.STDDEV(colseri

es, timeperiod=14, nbdev=1))

106.

 Risk Analysis and Performance Evaluation in Asset Management 29

107. # Resample daily returns to start

ing business day of the month with t

he first day for that month

108. sd_monthly = sd_daily.resample('B

MS').first()

109.

110. # Shift sd for the month by 1 mon

th forward so we can use it as a fea

ture for future predictions

111. sd_monthly = sd_monthly.shift(1).

dropna()

112.

113. # Rename Columns

114. sd_monthly.columns += '_SD'

115.

116. sd_monthly

117.

118. # 3. Calculate Rate of Change of

Price

119. ROC_daily = full_df.apply(lambda

colseries: talib.ROC(colseries, time

period=10))

120.

121. # Resample daily ROC to starting

business day of the month with the f

irst day for that month

122. ROC_monthly = ROC_daily.resample(

'BMS').first()

123.

124. # Shift sd for the month by 1 mon

th forward so we can use it as a fea

ture for future predictions

125. ROC_monthly = ROC_monthly.shift(1

).dropna()

126.

127. # Rename Columns

128. ROC_monthly.columns += '_ROC'

129.

130.

131. ROC_monthly

132.

133. # 4. Calculate RSI

134. RSI_daily = full_df.apply(lambda

colseries: talib.RSI(colseries, time

period=14))

135.

136. # Resample daily RSI to starting

business day of the month with the f

irst day for that month

137. RSI_monthly = RSI_daily.resample(

'BMS').first()

138.

139.

140. # Shift sd for the month by 1 mon

th forward so we can use it as a fea

ture for future predictions

141. RSI_monthly = RSI_monthly.shift(1

).dropna()

142.

143. # Rename Columns

144. RSI_monthly.columns += '_RSI'

145.

146.

147. RSI_monthly

148.

149. # 5. Calculate PPO

150. PPO_daily = full_df.apply(lambda

colseries: talib.PPO(colseries, fast

period=12, slowperiod=26, matype=0))

151.

152. # Resample daily RSI to starting

business day of the month with the f

irst day for that month

153. PPO_monthly = PPO_daily.resample(

'BMS').first()

154.

155. # Shift sd for the month by 1 mon

th forward so we can use it as a fea

ture for future predictions

156. PPO_monthly = PPO_monthly.shift(1

).dropna()

157.

158. # Rename Columns

159. PPO_monthly.columns += '_PPO'

160.

161. PPO_monthly

162.

163. # Collect Tech Indicators in Data

frame

164. Tech_Ind_df = pd.concat([ewma_mon

thly,sd_monthly, ROC_monthly, RSI_mo

nthly, PPO_monthly], axis=1)

165. Tech_Ind_df = Tech_Ind_df.dropna(

)

166. Tech_Ind_df.info()

167.

168. # Create features from Technical

Indicators and targets from historic

ally optimal security weights

169. targets_wt, features_ti = [], []

170.

171. for date, row in Tech_Ind_df.iter

rows():

172.

 Risk Analysis and Performance Evaluation in Asset Management 30

173. # Get the index number of the

 best sharpe ratio for each date

174. best_idx = max_sharpe_idxs[da

te]

175. # Use the maximal sharpe rati

o for each date to find optimal port

folio weights on that date

176. targets_wt.append(portfolio_w

eights[date][best_idx])

177. # add Technical Indicators to

 features

178. features_ti.append(Tech_Ind_d

f)

179.

180. # Convert list of target (optimal

) weights to numpy array

181. targets_wt_array = np.array(targe

ts_wt)

182.

183. # Then to dataframe

184. targets_wt_df = pd.DataFrame(data

 = targets_wt_array, columns= full_d

f.columns, index=Tech_Ind_df.index)

185. targets_wt_df.info()

186.

187. # Create complete Dataframe of we

ights, returns and Tech Indicators

188. ft_trg_df = pd.concat([Tech_Ind_d

f, returns_monthly, targets_wt_df],

axis=1)

189. ft_trg_df= ft_trg_df.dropna()

190.

191. # Calculate correlation matrix fo

r complete dataframe

192. Target_Feat_corr = ft_trg_df.corr

()

193. Target_Feat_corr

194.

195. # Plot heatmap of correlation mat

rix

196. import seaborn as sns

197. plt.figure(figsize=(14,8))

198. sns.heatmap(Target_Feat_corr, ann

ot=False, annot_kws = {"size": 11},

cmap='RdYlGn')

199. plt.yticks(rotation=0, size = 1);

 plt.xticks(rotation=90, size = 1)

fix ticklabel directions and size

200. plt.tight_layout() # fits plot a

rea to the plot, "tightly"

201. plt.show() # show the plot

202.

203. # Create features and targets dat

frames

204. ret_names = returns_monthly.colum

ns

205. ft_names = Tech_Ind_df.columns

206. tg_names = full_df.columns

207.

208. mret = ft_trg_df[ret_names]

209. ft = ft_trg_df[ft_names]

210. tg = ft_trg_df[tg_names]

211.

212. # Create training set + testing s

et for features and targets

213.

214. # Create a size for the training

set that is 85% of the total number

of samples

215. train_size_1 = int(0.85 * ft.shap

e[0])

216.

217. # Apply the trainsize to obtain a

 (starting) chronological subset of

the features data to train the algo

218. train_features_1 = ft[:train_size

_1]

219. # Apply trainsize to obtain a (st

arting) chronological subset of the

target data to train algo

220. train_targets_1 = tg[:train_size_

1]

221.

222. # Apply trainsize to obtain an (e

nding) chronological subset of the f

eatures data to test algo

223. test_features_1 = ft[train_size_1

:]

224. # Apply trainsize to obtain an (e

nding) chronological subset of the t

argets data to test algo

225. test_targets_1 = tg[train_size_1:

]

226.

227. # Inspect dimensions

228. print(train_features_1.shape, tes

t_features_1.shape)

229. print(train_targets_1.shape, test

_targets_1.shape)

230.

231. # Specify model with default para

meters

232. rfr_1 = RandomForestRegressor(n_e

stimators=1000, random_state=42)

233. # Run Model

 Risk Analysis and Performance Evaluation in Asset Management 31

234. rfr_1.fit(train_features_1, train

_targets_1)

235. # Output Model Explanatory Power

236. print(rfr_1.score(train_features_

1, train_targets_1))

237. print(rfr_1.score(test_features_1

, test_targets_1))

238.

239. # Specify hyperparameters to be t

uned

240.

241. from sklearn.model_selection impo

rt RandomizedSearchCV

242. # Number of trees in random fores

t

243. n_estimators = [int(x) for x in n

p.linspace(start = 200, stop = 2000,

 num = 10)]

244. # Number of features to consider

at every split

245. max_features = [int(x) for x in n

p.linspace(start = 10, stop =150, nu

m = 30)]

246. # Maximum number of levels in tre

e

247. max_depth = [int(x) for x in np.l

inspace(10, 150, num = 20)]

248. max_depth.append(None)

249. # With Replacement?

250. bootstrap = [True, False]

251. # Create the random grid

252. random_grid = {'n_estimators': n_

estimators,

253. 'max_features': ma

x_features,

254. 'max_depth': max_d

epth,

255. 'bootstrap': boots

trap}

256. print(random_grid)

257.

258. # Use the random grid to search f

or best hyperparameters using 10 fol

d cross validation and 100,000 itera

tions

259. # search across 10000 different c

ombinations, and use all available c

ores

260. rf_random = RandomizedSearchCV(es

timator = rfr_1, param_distributions

 = random_grid, n_iter = 100,

261. cv = 5, verbose=2, random_sta

te=42, n_jobs = -1)

262. # Fit the random search model

263. rf_random.fit(train_features_1, t

rain_targets_1)

264.

265. # Identify best hyparameters

266. rf_random.best_params_

267.

268. # Re-

specify model with tuned hyperparame

ters

269. rfr_random = RandomForestRegresso

r(n_estimators=1200, random_state=42

, max_features=10, max_depth= 83)

270. # Run Model

271. rfr_random.fit(train_features_1,

train_targets_1)

272. # Output Model Explanatory Power

273. print(rfr_random.score(train_feat

ures_1, train_targets_1))

274. print(rfr_random.score(test_featu

res_1, test_targets_1))

275.

276. # Import tools needed for visuali

zation

277. from sklearn.tree import export_g

raphviz

278. import pydotplus

279. from IPython.display import Image

280. # Pull out one tree from the fore

st

281. tree = rfr_random.estimators_[6]

282. # Export the image to a dot file

283. export_graphviz(tree, out_file =

'tree.dot', feature_names = ft_names

, rounded = True, precision = 4)

284. # Use dot file to create a graph

285. graph = pydotplus.graph_from_dot_

file('tree.dot')

286. # Write graph to a png file

287. Image(graph.create_png())

288. # Save PNG

289. graph.write_png("tree_ex.png")

290.

291. # Get security weight predictions

 from model on train and test

292. train_predictions_1 = rfr_random.

predict(train_features_1)

293. test_predictions_1 = rfr_random.p

redict(test_features_1)

 Risk Analysis and Performance Evaluation in Asset Management 32

294.

295. # Calculate and plot returns from

 our RF predictions

296. test_returns_1 = np.sum(mret.iloc

[train_size_1:] * test_predictions_1

, axis=1)

297. plt.plot(test_returns_1, label='a

lgo')

298.

299. plt.legend()

300. plt.show()

301.

302. # Generate portfolio return in te

st period

303. test_returns_1

304.

305. # Calculate cumulative return of

RF-optimized portfolio

306. cash = 1000

307. algo_cash = [cash] # set equal

starting cash amounts

308. for r in test_returns_1:

309. cash *= 1 + r

310. algo_cash.append(cash)

311.

312. print('algo returns:', (algo_cash

[-

1] - algo_cash[0]) / algo_cash[0])

313.

314. # Get feature importances from ou

r random forest model

315. importances_1 = rfr_random.featur

e_importances_

316.

317. # Get the index of importances fr

om greatest importance to least

318. sort_index = np.argsort(importanc

es_1)[::-1]

319. x = range(len(importances_1))

320.

321. # Create tick labels

322. plt.figure(figsize=(16,10))

323. labels = np.array(ft_names)[sort_

index]

324. plt.bar(x, importances_1[sort_ind

ex], tick_label=labels)

325.

326. # Rotate tick labels to vertical

327. plt.xticks(rotation=90)

328. plt.show()

8.14. Generate historic returns for strategies

1. def weight_ew(r, cap_weights=None,
max_cw_mult=None, microcap_threshol

d=None, **kwargs):

2. """

3. Returns the weights of the EW p
ortfolio based on the asset returns

 "r" as a DataFrame

4. If supplied a set of capweights

 and a capweight tether, it is appl

ied and reweighted

5. """
6. n = len(r.columns)

7. ew = pd.Series(1/n, index=r.col
umns)

8. if cap_weights is not None:
9. cw = cap_weights.loc[r.inde

x[0]] # starting cap weight

10. ## exclude microcaps

11. if microcap_threshold is no
t None and microcap_threshold > 0:

12. microcap = cw < microca

p_threshold

13. ew[microcap] = 0

14. ew = ew/ew.sum()
15. #limit weight to a multiple

 of capweight

16. if max_cw_mult is not None

and max_cw_mult > 0:

17. ew = np.minimum(ew, cw*

max_cw_mult)

18. ew = ew/ew.sum() #rewei

ght

19. return ew

20.
21. def weight_cw(r, cap_weights, **kwa

rgs):

22. """

23. Returns the weights of the CW p
ortfolio based on the time series o

f capweights

24. """

25. w = cap_weights.loc[r.index[11]
]# Index number Must match Estimati

on Window!!!

26. return w/w.sum()

27.
28. def weight_gmv(r, cov_estimator=sam

ple_cov, **kwargs):

29. """

30. Produces the weights of the GMV
 portfolio given a covariance matri

x of the returns

31. """

 Risk Analysis and Performance Evaluation in Asset Management 33

32. est_cov = cov_estimator(r, **kw
args)

33. return gmv(est_cov)
34.

35. def weight_erc(r, cov_estimator=sam
ple_cov, **kwargs):

36. """
37. Produces the weights of the ERC

 portfolio given a covariance matri

x of the returns

38. """
39. est_cov = cov_estimator(r, **kw

args)

40. return equal_risk_contributions

(est_cov)

41.

42. def weight_msr(r, cov_estimator=sam
ple_cov, **kwargs):

43. """
44. Produces the weights of the MSR

 portfolio given a ret series and c

ovariance matrix structure

45. """
46. est_cov = cov_estimator(r, **kw

args)

47. exp_ret = annualize_rets(r, 12,

**kwargs)

48. return msr(0,exp_ret, est_cov)

49.

50. # Create Security Weighting Scheme
for Black-Litterman Portfolios

51. ind_blcap = pd.read_excel("mktcap_2
008_2020.xlsx", sheet_name='BL_WTS'

, index_col=0, parse_dates=True)

52. ind_blcap =ind_blcap.loc[Start:End]

53. ind_blcap.index = pd.to_datetime(in

d_blcap.index, format="%Y%m").to_pe

riod('M')

54. total_blcap = ind_blcap.sum(axis="c
olumns")

55.
56. ind_blweight = ind_blcap.divide(tot

al_blcap, axis="rows")

57. ind_blweight = ind_blweight.iloc[0:

]

58. ind_blweight

59.
60. total_bl_return = (ind_blweight * i

nd_return).sum(axis="columns")

61. total_bl_return

62.

63. total_bl_index = drawdown(total_bl_
return).Wealth

64. total_bl_index.plot(title="BL Weigh
ted Index");

65.
66. # Specify Estimation Window

67. estimation_window=12
68.

69. # MSR Returns (sample cov)
70. MSRr_sample = backtest_ws(ind_retur

n, estimation_window=estimation_win

dow, weighting=weight_msr, cov_esti

mator=sample_cov)

71. # MSR Returns (shrink cov)

72. MSRr_shrink = backtest_ws(ind_retur
n, estimation_window=estimation_win

dow, weighting=weight_msr, cov_esti

mator=shrinkage_cov)

73.
74. # GMV Returns (sample cov)

75. GMVr_sample = backtest_ws(ind_retur
n, estimation_window=estimation_win

dow, weighting=weight_gmv, cov_esti

mator=sample_cov)

76. # GMV Returns (shrink cov)
77. GMVr_shrink = backtest_ws(ind_retur

n, estimation_window=estimation_win

dow, weighting=weight_gmv, cov_esti

mator=shrinkage_cov)

78.

79. # ERC Returns (sample cov)
80. ERCr_sample = backtest_ws(ind_retur

n, estimation_window=estimation_win

dow, weighting=weight_erc, cov_esti

mator=sample_cov)

81. # ERC Returns (shrink cov)

82. ERCr_shrink = backtest_ws(ind_retur
n, estimation_window=estimation_win

dow, weighting=weight_erc, cov_esti

mator=shrinkage_cov)

83.
84. # Random Forest Strategy Returns

85. outsamp_test_ret = test_returns_1.i
loc[-36:]

86. outsamp_test_ret
87.

88. # Extract values, remove time-
stamp

89. outsamp_tr_val = outsamp_test_ret.v
alues

90. outsamp_tr_val
91.

92. # Re-index

 Risk Analysis and Performance Evaluation in Asset Management 34

93. outsamp_tr_ser = pd.Series(data=out
samp_tr_val)

94. new_index = ewr['2017-07':].index
95. outsamp_tr_dtser = pd.Series(data=o

utsamp_tr_val, index=new_index)

96. outsamp_tr_dtser

97.
98. # Collect Out-of-

Sample Returns in DataFrame

99. btr_outsample = pd.DataFrame({

100. "EW": ewr['20
17-07':],

101. "CW": cwr['20
17-07':],

102. "MSR-
Sample": MSRr_sample['2017-

07':],

103. "MSR-

Shrink": MSRr_shrink['2017-07':],

104. "GMV-

Sample": GMVr_sample['2017-

07':],

105. "GMV-
Shrink": GMVr_shrink['2017-

07':],

106. "ERC": ERCr_s

ample['2017-07':],

107. "RF": outsamp

_tr_dtser,

108. "B-

L": total_bl_return['2017-07':]

109. })

110. # View DataFrame
111. btr_outsample

112.
113. # Compute Cumulative Return

114. cum_ret_outsample = (1+btr_outsam
ple).cumprod()

115. cum_ret_outsample
116.

117. # Plot Compunded Return
118. (1+btr_outsample).cumprod().plot(

figsize=(16,12), title="Strategies

Cumulative Return");

8.15. Generate Performance Metrics

1. def summary_stats(r, riskfree_rate=

rf):

2. """

3. Return a DataFrame that contain
s aggregated summary stats for the

returns in the columns of r

4. """

5. ann_r = r.aggregate(annualize_r
ets, periods_per_year=12)

6. ann_vol = r.aggregate(annualize
_vol, periods_per_year=12)

7. ann_sr = r.aggregate(sharpe_rat
io, riskfree_rate=riskfree_rate, pe

riods_per_year=12)

8. dd = r.aggregate(lambda r: draw

down(r).Drawdown.min())

9. skew = r.aggregate(skewness)

10. kurt = r.aggregate(kurtosis)
11. ann_semi_dev = r.aggregate(semi

deviation) * math.sqrt(ann_factor)

12. cf_var5 = r.aggregate(var_gauss
ian, modified=True)

13. hist_cvar5 = r.aggregate(cvar_h
istoric)

14. rovol = ann_r/ann_vol
15. ann_sortino = ann_r/ann_semi_de

v

16. rovar_cvar = ann_r/hist_cvar5

17. rocvar_cfvar = ann_r/cf_var5
18. radd = ann_r/-dd

19. return pd.DataFrame({
20. "Annualized Return": ann_r,

21. "Annualized Volatility": an

n_vol,

22. "Ann. Semi-

Dev.": ann_semi_dev,

23. "Skewness": skew,

24. "Kurtosis": kurt,
25. "Modified VaR (5%)": cf_var

5,

26. "Historic CVaR (5%)": hist_

cvar5,

27. "Max Drawdown": dd,

28. "Sharpe Ratio": ann_sr,
29. "Sortino Ratio": ann_sortin

o,

30. })

31.
32. # Display Results

33. summary_stats(btr_outsample.dropna(
)).round(4)

 Risk Analysis and Performance Evaluation in Asset Management 35

9. Results

10. Results

 Figure 5: Performance in Total Period

 Figure 4: Compounded Return in Total Period

 Risk Analysis and Performance Evaluation in Asset Management 36

 Figure 6: Compounded Return in Out-of-Sample Period

 Figure 7: Performance in Out-of-Sample Period

 Risk Analysis and Performance Evaluation in Asset Management 37

11. Conclusions

The GMV-Shrink portfolio is clearly the best

performer over the total period. It suffers the lowest

volatility and has the highest Sharpe ratio. The returns

distribution is the least fat-tailed (kurtotic) and the

second least negatively skewed resulting in the lowest

Modified Value-at-Risk. It also achieves the lowest

values for Conditional Value-at-Risk and Maximum

Drawdown. Additionally, it achieves the lowest semi-

deviation which gives it the second highest Sortino

Ratio. The MSR-Sample Portfolio achieves the

highest Sortino Ratio, due to a significantly higher

annualized return though the investor would be

obliged to assume higher dispersion of returns and

significantly greater tail risk. The MSR-Shrink

portfolio fails to outperform the MSR-Sample

portfolio because, in the portfolio selection process,

the higher mean assets returns are not adequately

penalized by higher volatilities. Error maximization is

more pronounced. The Equal-Weighted Portfolio

outperforms the Cap-Weighted benchmark in terms of

return per unit of risk, achieving superior Sharpe and

Sortino Ratios. However, the investor in the EW

strategy would be obliged to assume higher tail risk,

as indicated by the greater values of Modified VaR,

Conditional VaR and Maximum Drawdown. The

performance of the Equal Risk Contribution (ERC)

portfolio disappoints. It outperforms the Equal-

Weighted (EW) and Cap-Weighted (CW) Indices in

terms of Sortino and Sharpe Ratios though

underperforms all other portfolios. Moreover, tail risk

incurred is higher than that of EW and CW.

The starting 70% of the total data is used as the

chronological subset to train the Random Forest

model. The remaining data is the chronological subset

used to test the model. The predicted portfolio weights

in this out-of-sample test period are multiplied by

actual security returns to generate the RF strategy

returns which are then compared to those other

strategies. The Black-Litterman (B-L) portfolio is

constructed over this same period using the evolving

explicit Price Targets available for all constituent

securities. The GMV-Shrink Portfolio generates the

second best Sharpe and Sortino ratios in this truncated

period of elevated volatility. However, it is clearly and

significantly outperformed by the Black-Litterman

portfolio in these categories. Most notably, in terms of

performance attribution analysis, as the Coronavirus

crisis developed in 2020, the portfolio benefited from

the strong returns resulting from the overweighting of

Tech stocks and underweighting of Financials. In

general, over the entire out-of-sample period the

strong annualized return of B-L more than

compensates for additional volatility and semi-

deviation, resulting in the highest Sharpe and Sortino

Ratios. Of additional note is that the B-L returns

distribution has the lowest negative skew. The RF

portfolio underperforms the Cap-Weighted

Benchmark in terms of the Sharpe and Sortino Ratios

and approximately equals the CW benchmark in terms

of tail risk (Modified VaR, Conditional VaR, Max

Drawdown).

We find evidence that both robust portfolio risk and

return estimates produce portfolios capable of

outperformance. It would be instructive to test the

resilience of this tentative conclusion by expanding the

study to encompass different time frames and

international (non-US) equity markets. The under-

performance of the RF portfolio should not necessarily

be interpreted as a condemnation of the model but

rather the feature variables (the specific technical

indicators) used as inputs to the model. Further work

should be done to see if volume-based or

macroeconomic-orientated data could yield more

favorable results.

References

[1] Markowitz, H. (1952). Portfolio selection. The Journal of

Finance, 7(1), 77–91.

[2] Merton, R. C. (1972). An analytic derivation of the efficient

portfolio frontier. Journal of Financial and Quantitative

Analysis, 7(04), 1851–1872.

[3] Michaud, R. O. (1989). The Markowitz optimization enigma:

Is “optimized” optimal? Financial Analysts Journal, 45(1), 31–

42.

[4] Jobson, J.D., Korkie, B.M., (1981). Performance hypothesis

testing with the Sharpe and Treynor measures. Journal of

Finance 36, 889–908.

[5] Stein, C. (1956). Inadmissibility of the usual estimator for the

mean of a multivariate normal distribution. Proceedings of the

Third Berkeley Symposium on Mathematical Statistics and

Probability, 399(1), 197–206.

[6] Best, M. J., & Grauer, R. R. (1991). On the sensitivity of mean-

variance-efficient portfolios to changes in asset means: Some

analytical and computational results. Review of Financial

Studies, 4(2), 315–342.

 Risk Analysis and Performance Evaluation in Asset Management 38

[7] Chopra, V. K. (1993). Improving optimization. The. Journal of

Investing, 2(3), 51–59.

[8] Chopra, V. K., & Ziemba,W. T. (1993). The effect of errors in

means, variances, and covariances on optimal portfolio choice.

Journal of Portfolio Management, 19(2), 6–11.

[9] James, W., and Stein, C., (1961). “Estimation with Quadratic

Loss.” Proceedings of the Fourth Berkeley Symposium, Vol. 1

(Berkeley, California: University of California Press), pp. 361-

379

[10] Black F. and Litterman R. (1991). Asset Allocation Combining

Investor Views with Market Equilibrium, Journal of Fixed

Income, September 1991, Vol. 1, No. 2: pp. 7-18

[11] Black F. and Litterman R. (1991). Global Portfolio

Optimization, Financial Analysts Journal, September 1992, pp.

28–43

[12] Ledoit, O., & Wolf, M. (2003). Improved estimation of the

covariance matrix of stock returns with an application to

portfolio selection. Journal of Empirical Finance, 10(5), 603–

621.

[13] Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator

for large-dimensional covariance matrices. Journal of

Multivariate Analysis, 88(2), 365–411.

[14] Elton, E.J. and M.J. Gruber, (1973). Estimating the

Dependence Structure of Share Prices – Implications for

Portfolio Selection, Journal of Finance 28, 1203-1232.

[15] Elton, E.J., M.J. Gruber and T. Ulrich, (1978). Are Betas Best?

Journal of Finance 23, 1375-1384.

[16] Maillard, S., Roncalli, T., Teiletche, J. (2010). On the

properties of equally-weighted risk contributions portfolios.

The Journal of Portfolio Management 36 (4) 60-70

[17] Bruder, B., and Roncalli, T. (2012). Managing Risk Exposures

Using the Risk Budgeting Approach Working Paper (January

20, 2012).

[18] Breiman, L. (2001). Random Forests. Machine Learning 45, 5–

32

[19] Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984)

Classification and Regression Trees. Chapman and Hall,

Wadsworth, New York

[20] Breiman, L. (1996a). Bagging predictors. Machine Learning

26(2), 123–140

[21] Yang, B.H., (2013): Modeling Portfolio Risk by Risk

Discriminatory Trees and Random Forests. Published in:

Journal of Risk Model Validation , Vol. 8, No. 1 (18 March

2014)

[22] Khaidem L., Saha S. & Roy Dey S. (2016). Predicting the

direction of stock market prices using random forest. arXiv

preprint arXiv:1605.00003.

[23] Hodges, S D (1997). A generalisation of the Sharpe ratio and

its applications to valuation bounds and risk measures.

Working paper of the Financial Options Research Centre,

University of Warwick.

[24] Harlow, W. (1991). Asset Allocation in a Downside Risk

Framework, Financial Analysts Journal 47(5), 28-40.

